Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies.

AJNR Am J Neuroradiol

Institute for Diagnostic and Intervenational Radiology, Department of Neurology, Friedrich-Schiller University, Jena, Germany.

Published: January 2000

Background And Purpose: Early diagnosis of perfusion deficits in patients with acute stroke could guide treatment decisions and improve prognosis. We investigated the sensitivity of perfusion CT studies using parametric time-to-peak maps to assess ischemic brain tissue with respect to early infarct signs on native CT scans.

Methods: First-pass, single-section perfusion CT was performed in 20 patients who presented with symptoms of acute stroke within 6 hours of onset. Initial CT perfusion studies were compared with follow-up studies within 30 hours in 10 patients. A manual, region of interest (ROI)-based, local evaluation procedure was performed to determine delayed time-to-peak values and diminished peak amplitudes. In addition, time-to-peak parameter maps were processed off-line from the dynamic CT data sets to identify areas of perfusion deficits, which were expressed as hemispheric lesion areas (HLAs). Evolution of the ischemic regions was assessed by comparing the HLA on the initial and follow-up studies as well as on the native CT scan of the follow-up studies.

Results: Diagnostic time-to-peak maps were generated in 19 of 20 initial and in nine of 10 follow-up perfusion CT studies. The initial time-to-peak map showed perfusion deficits in 14 of 20 patients. Hemispheric territorial infarcts were diagnosed with a sensitivity of 93%. Perfusion deficits in two patients with brain stem infarctions and three patients with lacunar strokes were missed. Follow-up time-to-peak maps showed the extent of reperfusion after various therapeutic strategies.

Conclusion: Perfusion CT is potentially useful for detecting cerebral perfusion deficits in acute ischemic stroke before morphologic changes are observable on native CT scans. Compared with a locally restricted ROI-based evaluation, time-to-peak maps provide sensitive, global indications of malperfused brain areas, facilitate lesion localization, and allow assessment of the evolution of the infarction during follow-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657777PMC

Publication Analysis

Top Keywords

perfusion deficits
20
perfusion studies
16
time-to-peak maps
16
acute stroke
12
deficits patients
12
perfusion
11
time-to-peak
8
follow-up perfusion
8
follow-up studies
8
initial follow-up
8

Similar Publications

Background: To compare the characteristics of type 1 macular neovascularization (MNV) and the surrounding choriocapillaris (CC) perfusion in patients with neovascular age-related macular degeneration (nAMD) versus those with pachychoroid neovasculopathy (PNV) using swept-source optical coherence tomography angiography (SS-OCTA).

Methods: This retrospective study included 64 treatment-naïve eyes (37 nAMD, 27 PNV) with type 1 MNV. SS-OCTA images were analysed to measure MNV area and perimeter, and CC flow deficits (FD) in five concentric rings surrounding the lesion.

View Article and Find Full Text PDF

Background And Objectives: Cerebrovascular reactivity (CVR) represents the ability of cerebral blood vessels to regulate blood flow in response to vasoactive stimuli and is related to cognition in cerebrovascular and neurodegenerative conditions. However, few studies have examined CVR in the medial temporal lobe, known to be affected early in Alzheimer disease and to influence memory function. We aimed to examine whether medial temporal CVR is associated with memory function in older adults with and without mild cognitive impairment (MCI).

View Article and Find Full Text PDF

Assessment of Coronary Microcirculation with High Frame-Rate Contrast-Enhanced Echocardiography.

Ultrasound Med Biol

January 2025

Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands. Electronic address:

Objective: Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization.

View Article and Find Full Text PDF

Nuclear Medicine Imaging in Epilepsy.

Radiographics

January 2025

From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219 (A.S., A.T.T., B.W.M., L.L.W., J.L.S.); and Department of Radiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH (A.T.T.).

Approximately one-third of patients with focal epilepsy have medically refractory focal epilepsy (MRFE), which significantly impacts their quality of life. Once a seizure focus is identified and determined to be in the noneloquent cortex, it can be surgically resected with the goal of freedom from seizures and minimal neurocognitive deficit. During noninvasive (phase I) presurgical planning, functional (nuclear) imaging and structural imaging are complementary in the accurate localization of the epileptogenic zone (EZ).

View Article and Find Full Text PDF

Background: Acute type A aortic dissection (A-AAD) with severe acute aortic regurgitation (AR) and coronary involvement is a potentially fatal condition that causes left ventricular volume overload and catastrophic acute myocardial infarction. We present the successful management of a patient using Impella 5.5 following cardiopulmonary arrest caused by A-AAD with severe acute AR and left main trunk (LMT) obstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!