Paired Mg and Mg(B) ionization chambers for the measurement of boron neutron capture dose in neutron beams.

Med Phys

Gershenson Radiation Oncology Center, Karmanos Cancer Institute, Harper Hospital and Wayne State University, Detroit, Michigan 48201, USA.

Published: November 1999

The use of the boron neutron capture (BNC) reaction to provide a dose enhancement in fast neutron therapy is currently under investigation at the Gershenson Radiation Oncology Center of Harper Hospital in Detroit, MI. The implementation of this treatment modality presents unique challenges in dosimetry. In addition to the measurement of photon and neutron doses in the mixed field, a measure of the thermal neutron flux and the associated boron neutron capture dose throughout the treatment volume is desired. A pair of small-volume magnesium ionization chambers has been constructed with the aim of providing this information. One of the chambers, denoted the Mg(B) chamber, is lined with a boron-loaded foil. The ionization response of this chamber has been calibrated in terms of BNC dose per ppm loading of 10B. These paired chambers can be used to map the local BNC response in neutron beams. From this data and an estimation of the boron concentration in the tumor and normal tissue, the boron neutron capture enhancement may be evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.598768DOI Listing

Publication Analysis

Top Keywords

boron neutron
16
neutron capture
16
neutron
9
ionization chambers
8
capture dose
8
neutron beams
8
boron
5
paired mgb
4
mgb ionization
4
chambers
4

Similar Publications

Background: To study the risk of cardiovascular disease (CVD) and other competing causes of death in older kidney cancer patients.

Methods: Data on older patients (aged 65 and above) diagnosed with kidney cancer between 1975 and 2018 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. We delved into the distribution of CVD and other competing causes of death across the entire cohort and in various patient subgroups.

View Article and Find Full Text PDF

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

Modeling inorganic glasses requires an accurate representation of interatomic interactions, large system sizes to allow for intermediate-range structural order, and slow quenching rates to eliminate kinetically trapped structural motifs. Neither first principles-based nor force field-based molecular dynamics (MD) simulations satisfy these three criteria unequivocally. Herein, we report the development of a machine learning potential (MLP) for a classic glass, B2O3, which meets these goals well.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!