Neuropharmacology
Department of Pharmacology, University of Arizona College of Medicine, Tucson 85724-5050, USA.
Published: November 1999
Immunocytochemical and autoradiographic methods were used to localize the GABA(B) receptor in the normal rat hippocampus. GABA(B) receptor 1-like immunoreactivity (GBR1-LI) was most intense in presumed GABAergic interneurons of all hippocampal subregions. It was also present throughout the hippocampal neuropil, where it was most intense in the dendritic strata of the dentate gyrus, which are innervated by the perforant pathway and inhibitory dentate hilar cells, and in strata oriens and radiatum of area CA3. The dendritic regions of area CA1 exhibited less GBR1-LI than area CA3. GBR1-LI was detectable in the somata of CA1 pyramidal cells, but was minimal or undetectable within the somata of dentate granule cells and CA3 pyramidal cells. GBR1-LI was similarly minimal in the dentate hilar neuropil, and in stratum lucidum, the two regions that contain granule cell axons and terminals. Nor was GBR1-LI detectable in the inhibitory basket cell fiber systems that surround hippocampal principal cell somata. Fluorescence co-localization studies indicated that significant proportions of interneurons expressing somatostatin, neuropeptide Y, cholecystokinin, calbindin, or calretinin also expressed GBR1-LI constitutively. Conversely, parvalbumin-positive GABAergic basket cells of the dentate gyrus and hippocampus, which form GABA(A) receptor-mediated inhibitory axo-somatic synapses, rarely contained detectable GBR1-LI. High resolution autoradiography with the GABA(B) receptor antagonist CGP 62349 revealed a close correspondence between receptor ligand binding and GBR1-LI, with several notable exceptions. Ligand binding closely matched GBR1-LI throughout the hippocampal, cortical, thalamic, and cerebellar neuropil. However, the hippocampal interneuron somata and dendrites that exhibited the most intense GBR1-LI, and the GBR1-positive somata of CA1 pyramidal cells, did not exhibit a similar density of [3H]-CGP 62349 binding. These data clarify the relationship between immunocytochemically identified receptor protein and potentially functional receptors, indicating that GBR1-LI reflects both non-functional cytoplasmic GBR1 and the ligand-bindable form of the protein, both before dimerization with GBR2 and after translocation to functional sites within cells. The staining and binding patterns further suggest that GBR1 is constitutively expressed in specific neuronal populations, and may exist in higher concentration in the axons of inhibitory hippocampal pathways that innervate dendritic zones, than in axo-somatic inhibitory terminals. Whether GBR1 is inducible in cells that contain GBR1 mRNA, but no detectable constitutive protein, remains to be determined in experimental studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0028-3908(99)00132-x | DOI Listing |
J Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China. Electronic address:
Cerebrospinal fluid-contacting neurons (CSF-cNs) exhibit neural stem cell (NSC) properties both in vitro and in vivo, and they may play a critical role in recovery after spinal cord injury (SCI). GABA receptors (GABABRs) are expressed in Pkd2l1 CSF-cNs. However, their role in Pkd2l1 CSF-cNs still needs to be discovered.
View Article and Find Full Text PDFMol Biol Rep
January 2025
College of Life Sciences, Liaoning Normal University, Dalian, Liaoning, 116029, China.
Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.
Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.
J Neurosci
January 2025
Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892. USA.
Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.