A new paradigm of neural network architecture is proposed that works as associative memory along with capabilities of pruning and order-sensitive learning. The network has a composite structure wherein each node of the network is a Hopfield network by itself. The Hopfield network employs an order-sensitive learning technique and converges to user-specified stable states without having any spurious states. This is based on geometrical structure of the network and of the energy function. The network is so designed that it allows pruning in binary order as it progressively carries out associative memory retrieval. The capacity of the network is 2n, where n is the number of basic nodes in the network. The capabilities of the network are demonstrated by experimenting on three different application areas, namely a Library Database, a Protein Structure Database and Natural Language Understanding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/s0129065799000332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!