Microphthalmic mice display a B cell deficiency similar to that seen for mast and NK cells.

J Immunol

Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City 84132, USA.

Published: December 1999

The microphthalmic mouse (mi) possesses a 3-bp deletion of the Mi gene that alters the DNA binding site of the transcription factor gene product. This animal has diminished numbers of NK and mast cells (MC) and is osteopetrotic due to a lack of the normal complement of functional osteoclasts. The reduction of MC has been proposed to be due to the lack of adequate c-Kit expression that is required for MC differentiation. However, data from other labs has questioned this interpretation. In this report, we present data suggesting bone marrow-derived deficiencies of the mi mouse are not due to a lack of c-Kit expression and function, but instead due to an inhospitable environment within the bone marrow itself. Specifically, we have found that such animals also lack virtually all B cell precursors within the marrow and rely upon other lymphatic sites, such as the spleen, for B cell development and maturation. Although the animal has depressed numbers of NK cells, B cells, and MC, it still possesses a normal thymus and peripheral T cells. Therefore, the block in cellular differentiation must be within the marrow environment, which is essential for maturing B cells, NK cells, and MC but not T cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cells cells
12
cells
8
mast cells
8
c-kit expression
8
microphthalmic mice
4
mice display
4
display cell
4
cell deficiency
4
deficiency mast
4
cells microphthalmic
4

Similar Publications

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, airway obstruction, and lung damage, often triggered by cigarette smoke. Dysregulated autophagy and inflammation are key contributors to its progression. Although double-stranded RNA-binding protein Staufen homolog 1 (STAU1), a multifunctional protein primarily involved in mRNA transport and localization, is identified as a potential biomarker, its role in COPD pathogenesis remains unclear.

View Article and Find Full Text PDF

Acanthoside B attenuates NLRP3-mediated pyroptosis and ulcerative colitis through inhibition of tAGE/RAGE pathway.

Allergol Immunopathol (Madr)

January 2025

Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;

Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.

View Article and Find Full Text PDF

The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

Background: Familial Mediterranean Fever is a common genetic autoinflammatory disease prevalent in the Mediterranean region. The clinical course of the disease is characterized by fever and serositis attacks. While defects in the innate immune system are known to play a role in the pathogenesis of the disease, the impact of the adaptive immune system remains unclear.

View Article and Find Full Text PDF

A new pipeline SPICE identifies novel JUN-IKZF1 composite elements.

Elife

January 2025

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States.

Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!