The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants.

Nat Biotechnol

Departamento de Química, Centro Básico, Universidad Autónoma de Aguascalientes, Ave. Universidad 940, C.P. 20 100, Aguascalientes, Ags. México.

Published: December 1999

As the processing mechanism of all known potyviruses involves the activity of cysteine proteinases, we asked whether constitutive expression of a rice cysteine proteinase inhibitor gene could induce resistance against two important potyviruses, tobacco etch virus (TEV) and potato virus Y (PVY), in transgenic tobacco plants. Tobacco lines expressing the foreign gene at varying levels were examined for resistance against TEV and PVY infection. There was a clear, direct correlation between the level of oryzacystatin message, inhibition of papain (a cysteine proteinase), and resistance to TEV and PVY in all lines tested. The inhibitor was ineffective against tobacco mosaic virus (TMV) infection because processing of this virus does not involve cysteine proteinases. These results show that plant cystatins can be used against different potyviruses and potentially also against other viruses, whose replication involves cysteine proteinase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/70781DOI Listing

Publication Analysis

Top Keywords

cysteine proteinase
16
resistance potyviruses
8
transgenic tobacco
8
tobacco plants
8
cysteine proteinases
8
resistance tev
8
tev pvy
8
cysteine
6
tobacco
5
proteinase inhibitors
4

Similar Publications

Rationale: COVID-19-associated acute-respiratory distress syndrome (C-ARDS) results from a direct viral injury associated with host excessive innate immune response mainly affecting the lungs. However, cytokine profile in the lung compartment of C-ARDS patients has not been widely studied, nor compared to non-COVID related ARDS (NC-ARDS).

Objectives: To evaluate caspase-1 activation, IL-1 signature, and other inflammatory cytokine pathways associated with tissue damage using post-mortem lung tissues, bronchoalveolar lavage fluids (BALF), and serum across the spectrum of COVID-19 severity.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Caspase 3-specific cleavage of ubiquitin-specific peptidase 48 enhances drug-induced apoptosis in AML.

Cancer Biol Ther

December 2025

National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.

View Article and Find Full Text PDF

Introduction: Periodontitis is associated with rheumatoid arthritis (RA). One hypothesis posits that this connection arises from the formation of autoantibodies against citrullinated proteins (ACPA) in inflamed gums, possibly triggered by . We previously demonstrated an increased antibody response to arginine gingipains (anti-Rgp IgG), not only in individuals with severe periodontitis compared to controls, but in RA versus controls, with an association to ACPA.

View Article and Find Full Text PDF

Background: Radix Bupleuri (RB) and acetaminophen (APAP) are two popular medications having potential hepatotoxicity and substantial risks of irrational co-administration and excessive use, posing an overlooked danger of drug-induced liver injury (DILI). Autophagy is a protective mechanism against APAP-induced DILI, yet, saikosaponin d (SSd) in RB has been characterized to regulate autophagy, although the current findings are controversial.

Purpose: We aim to elucidate whether SSd promoted APAP-induced liver injury by regulating autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!