cobA, a red fluorescent transcriptional reporter for Escherichia coli, yeast, and mammalian cells.

Nat Biotechnol

Pharma Division, Preclinical CNS Research and GeneTechnologies, Molecular Neurobiology, F. Hoffmann-La Roche AG, Basel, Switzerland.

Published: December 1999

We demonstrate the use of Propionibacterium freudenreichii uroporphyrinogen III methyltransferase (cobA) as a reporter of gene expression in Escherichia coli, fission yeast, and mammalian cells. Overexpression of cobA in cells resulted in bright red fluorescence that was visualized with standard fluorescence microscopy and fluorescence-activated cell sorting analysis at the single-cell level. As with green fluorescent protein (GFP), no addition of exogenous substrate was required. When expressed in Chinese hamster ovary cells from a bicistronic transcript, cobA and GFP gave rise to fluorescence signals of similar intensity. The bright red fluorescence generated by the cobA reporter promises a better signal-to-noise ratio than blue and green fluorescent reporter systems, as autofluorescence and light scattering of cells, media, and materials are reduced in the red wavelengths.

Download full-text PDF

Source
http://dx.doi.org/10.1038/70713DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
yeast mammalian
8
mammalian cells
8
coba reporter
8
bright red
8
red fluorescence
8
green fluorescent
8
coba
5
cells
5
coba red
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli.

NPJ Antimicrob Resist

January 2025

College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.

Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942.

Int J Biol Macromol

January 2025

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China. Electronic address:

In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!