New neurons are continuously generated in certain regions of the adult brain. Studies in rodents have shown that new neurons are generated from self-renewing multipotent neural stem cells. Here we demonstrate that both the lateral ventricle wall and the hippocampus of the adult human brain harbor self-renewing cells capable of generating neurons, astrocytes, and oligodendrocytes in vitro, i.e., bona fide neural stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.1999.4678 | DOI Listing |
Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.
View Article and Find Full Text PDFDuring nervous system development, diverse types of neurons and glia are sequentially generated by self-renewing neural stem cells (NSCs). Temporal changes in gene expression within NSCs are thought to regulate neural diversity; however, the mechanisms regulating the timing of these temporal gene transitions remain poorly understood. type II NSCs, like human outer radial glia, divide to self-renew and generate intermediate neural progenitors, amplifying and diversifying the population of neurons innervating the central complex, a brain region required for sensorimotor coordination.
View Article and Find Full Text PDFThe evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.
View Article and Find Full Text PDFUnlabelled: Asymmetric cell division is used by stem cells to create diverse cell types while self-renewing the stem cell population. Biased segregation of molecularly distinct centrosomes could provide a mechanism to maintain stem cell fate, induce cell differentiation or both. However, the molecular mechanisms generating molecular and functional asymmetric centrosomes remain incompletely understood.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!