The purpose of this study was to evaluate the effect of unilateral stimulation of the nucleus ventralis intermedius (VIM) on parkinsonian signs like postural stability and locomotion with respect to the severity of Parkinson's disease (PD). Seven patients with idiopathic PD were included in the study. Changes in visual cues on postural stability and step initiation were assessed on a fixed platform system with VIM stimulation switched either on (VIM ON) or off (VIM OFF), and compared with a control group of seven age-matched normal individuals. Sway scores (area and path) were significantly (p <0.05) higher in the parkinsonian patients with VIM OFF than with VIM ON as well as compared with the control subjects. No correlation was obtained between extent of sway scores and severity of contralateral tremor after cessation of VIM stimulation. Locomotion parameters, by contrast, were not influenced by VIM stimulation: latency until step initiation and walking-cycle time were the same among parkinsonian patients as among normal individuals, both in the presence and in the absence of VIM stimulation. In conclusion, our results indicate that tremor suppression by VIM stimulation improves postural stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1531-8257(199911)14:6<958::aid-mds1008>3.0.co;2-eDOI Listing

Publication Analysis

Top Keywords

stimulation nucleus
8
nucleus ventralis
8
ventralis intermedius
8
postural stability
8
deep brain
4
brain stimulation
4
intermedius affect
4
affect postural
4
postural control
4
control locomotion
4

Similar Publications

Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).

View Article and Find Full Text PDF

Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.

View Article and Find Full Text PDF

Mycoplasma pneumoniae MPN606 induces inflammation by activating MAPK and NF-κB signaling pathways.

Microb Pathog

January 2025

Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China. Electronic address:

Mycoplasma pneumoniae (M. pneumoniae) is one of the major pathogens causing community-acquired pneumonia (CAP), and its pathogenic mechanism is not fully understood. Inflammatory response is the most basic and common pathological phenomenon of CAP, but the specific mechanism needs further investigation.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).

View Article and Find Full Text PDF

Substance use disorders (SUDs) are a significant public health concern, with over 30% failing available treatment. Severe SUD is characterized by drug-cue reactivity that predicts treatment-failure. We leveraged this pathophysiological feature to personalize deep brain stimulation (DBS) of the nucleus accumbens region (NAc) in an SUD patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!