In preparing this Position Statement, all relevant scientific literature was identified and reviewed critically by acknowledged experts using agreed criteria. Well-conducted clinical and experimental studies were given precedence over anecdotal case reports and abstracts were not usually considered. A draft Position Statement was then produced and subjected to detailed peer review by an international group of clinical toxicologists chosen by the American Academy of Clinical Toxicology and the European Association of Poisons Centres and Clinical Toxicologists. The Position Statement went through multiple drafts before being approved by the Boards of the two societies. The Position Statement includes a summary statement for ease of use and is supported by detailed documentation which describes the scientific evidence on which the Statement is based. Although many studies in animals and volunteers have demonstrated that multiple-dose activated charcoal increases drug elimination significantly, this therapy has not yet been shown in a controlled study in poisoned patients to reduce morbidity and mortality. Further studies are required to establish its role and the optimal dosage regimen of charcoal to be administered. Based on experimental and clinical studies, multiple-dose activated charcoal should be considered only if a patient has ingested a life-threatening amount of carbamazepine, dapsone, phenobarbital, quinine, or theophylline. With all of these drugs there are data to confirm enhanced elimination, though no controlled studies have demonstrated clinical benefit. Although volunteer studies have demonstrated that multiple-dose activated charcoal increases the elimination of amitriptyline, dextropropoxyphene, digitoxin, digoxin, disopyramide, nadolol, phenylbutazone, phenytoin, piroxicam, and sotalol, there are insufficient clinical data to support or exclude the use of this therapy. The use of multiple-dose charcoal in salicylate poisoning is controversial. One animal study and 2 of 4 volunteer studies did not demonstrate increased salicylate clearance with multiple-dose charcoal therapy. Data in poisoned patients are insufficient presently to recommend the use of multiple-dose charcoal therapy for salicylate poisoning. Multiple-dose activated charcoal did not increase the elimination of astemizole, chlorpropamide, doxepin, imipramine, meprobamate, methotrexate, phenytoin, sodium valproate, tobramycin, and vancomycin in experimental and/or clinical studies. Unless a patient has an intact or protected airway, the administration of multiple-dose activated charcoal is contraindicated. It should not be used in the presence of an intestinal obstruction. The need for concurrent administration of cathartics remains unproven and is not recommended. In particular, cathartics should not be administered to young children because of the propensity of laxatives to cause fluid and electrolyte imbalance. In conclusion, based on experimental and clinical studies, multiple-dose activated charcoal should be considered only if a patient has ingested a life-threatening amount of carbamazepine, dapsone, phenobarbital, quinine, or theophylline.

Download full-text PDF

Source
http://dx.doi.org/10.1081/clt-100102451DOI Listing

Publication Analysis

Top Keywords

activated charcoal
28
multiple-dose activated
24
position statement
20
clinical toxicologists
12
clinical studies
12
multiple-dose charcoal
12
charcoal
11
clinical
11
studies
9
multiple-dose
9

Similar Publications

To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

Tea plantations commonly receive substantial quantities of nitrogen (N) fertilizer, with potential for considerable N loss to occur. This study assessed N retention in acidic tea plantation soil and examined how different biochar application rates and fertilizer combinations affect N dynamics, highlighting the importance of innovative technologies to monitor and enhance N supply management. This research adopted a modified 2-week aerobic incubation and ion-exchange membrane (IEM) techniques to evaluate the soil N supply in tea plantations following early-summer top-dressing as influenced by various biochar rates and fertilizer combinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!