A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. | LitMetric

Background: The extent of fat emulsification affects the activity of digestive lipases in vitro and may govern digestion and absorption of dietary fat.

Objective: We investigated the effect of the fat globule size of 2 enteral emulsions on fat digestion and assimilation in humans.

Design: Healthy subjects received intragastrically a coarse (10 microm) and a fine (0.7 microm) lipid emulsion of identical composition in random order. Gastric and duodenal aspirates were collected throughout digestion to measure changes in fat droplet size, gastric and pancreatic lipase activities, and fat digestion. Blood lipids were measured postprandially for fat assimilation.

Results: Despite an increase in droplet size in the stomach (2.75-6.20 microm), the fine emulsion retained droplets of smaller size and its lipolysis was greater than that of the coarse emulsion (36.5% compared with 15.8%; P < 0.05). In the duodenum, lipolysis of the fine emulsion was on the whole higher (73.3% compared with 46.3%). The overall 0-7-h plasma and chylomicron responses given by the areas under the curve were not significantly different between the emulsions, but the triacylglycerol peak was delayed with the fine emulsion (3 h 56 min compared with 2 h 50 min).

Conclusions: Fat emulsions behave differently in the digestive tract depending on their initial physicochemical properties. A lower initial fat droplet size facilitates fat digestion by gastric lipase in the stomach and duodenal lipolysis. Overall fat assimilation in healthy subjects is not affected by differences in initial droplet size because of efficient fat digestion by pancreatic lipase in the small intestine. Nevertheless, these new observations could be of interest in the enteral nutrition of subjects suffering from pancreatic insufficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/70.6.1096DOI Listing

Publication Analysis

Top Keywords

fat digestion
16
droplet size
16
fat
12
fine emulsion
12
digestion absorption
8
fat emulsions
8
digestive tract
8
healthy subjects
8
microm fine
8
fat droplet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!