Background And Purpose: The present study examined the contributions of a rise in cGMP versus a fall in 20-HETE levels to the vasodilator response to nitric oxide (NO) in the cerebral circulation of the rat.

Methods: Intact rat middle cerebral and basilar arteries were bathed in physiological saline solution containing indomethacin (5 micromol/L) and baicalein (0.5 micromol/L) and pressurized at 90 mm Hg. Relaxations to sodium nitroprusside (SNP) were studied before and after addition of [1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one] (ODQ, a guanylyl cyclase blocker), 8R,9S, 11S-(-)-9-methoxy-carbamyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-trizadibenzo-(a,g)-cycloocta-(c, d, e)-trinden-1-one (KT5823, a protein kinase G blocker), and 20-hydroxyeicosatetraenoic acid (20-HETE). Cerebral blood flow was measured by using a laser Doppler flow probe over a thin cranial window in anesthetized rats, and the effects of intracerebroventricular infusion of 1-hexamine, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)N-methyl (MAHMA nonoate) and dibromododecenyl methylsulfimide (DDMS) were determined.

Results: SNP-induced dilation of serotonin-preconstricted (0.2 micromol/L) middle cerebral arteries (10(-7) to 10(-3) mol/L) was attenuated in arteries treated with ODQ (10 micromol/L) or KT5823 (1 micromol/L) by 52% and 27%, respectively. Preventing the NO-induced fall in intracellular 20-HETE, by adding 20-HETE (100 nmol/L) to the bath, reduced the dilation to SNP by 62%. Simultaneous administration of ODQ and 20-HETE markedly attenuated the SNP-induced dilation by 90%. In basilar arteries, ODQ (10 micromol/L) alone completely blocked the response to SNP. Infusion of MAHMA nonoate (10 nmol/min ICV) in anesthetized rats increased cerebral blood flow by 52% before and 8% after blockade of the endogenous production of 20-HETE with DDMS (50 pmol/min).

Conclusions: These results suggest that NO dilates cerebral arteries through both cGMP-dependent and cGMP-independent pathways and that inhibition of 20-HETE formation contributes to the cerebral vasodilator response to NO both in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.str.30.12.2727DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
cerebral
8
oxide cerebral
8
vasodilator response
8
middle cerebral
8
basilar arteries
8
cerebral blood
8
blood flow
8
anesthetized rats
8
mahma nonoate
8

Similar Publications

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.

View Article and Find Full Text PDF

Characterizing Oxidative Stress induced by Aβ Oligomers and the Protective Role of Carnosine in Primary Mixed Glia Cultures.

Free Radic Biol Med

January 2025

Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.

View Article and Find Full Text PDF

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!