We have reported that endothelial interleukin 8 (IL-8) induces apoptosis in leukemic cells in vitro and in vivo, and that interaction between endothelial cells and leukemic cells causes induction of apoptosis through the release of endothelial IL-8 (Y. Terui et al., Biochem. Biophys. Res. Commun., 243: 407-411, 1998; Y. Terui et al., Blood, 92: 2672-2680, 1998). Here, we examined whether a pentapeptide corresponding to the NH2-terminal region of endothelial IL-8 can induce apoptosis in leukemic cells. The NH2-terminal pentapeptide Ala-Val-Leu-Pro-Arg (AVLPR) was found to significantly induce apoptosis in the leukemic cell lines K562, HL-60, Jurkat, and Daudi, as compared with the COOH-terminal pentapeptide Arg-Glu-Ala-Asn-Ser (REANS). Moreover, the NH2-terminal pentapeptide AVLPR significantly inhibited growth of i.p. and s.c. tumor masses of K562 cells and induced apoptosis in these cells in vivo. The active site of endothelial IL-8 is the NH2-terminal pentapeptide AVLPR, and this may serve as a new therapy for hematological malignancies.
Download full-text PDF |
Source |
---|
J Biol Chem
August 2003
Department of Chemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan.
The esterification reagent 9-anthroylnitrile (ANN) reacts with a serine residue in the NH2-terminal 23-kDa peptide segment of myosin subfragment-1 heavy chain to yield a fluorescent S1 derivative labeled by the anthroyl group (Hiratsuka, T. (1989) J. Biol.
View Article and Find Full Text PDFIUBMB Life
January 2003
Department of Biochemistry, College of Medical Sciences, Health Professions Division, Nova Southeastern University, 3200 South University Dr, Ft. Lauderdale, FL 33328-2018, USA.
3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase (PAPSS) catalyzes the biosynthesis of PAPS which serves as the universal sulfonate donor compound for all sulfotransferase reactions. PAPSS forms PAPS in two sequential steps. First inorganic sulfate combines with ATP to form adenosine 5'-phosphosulfate (APS) and pyrophosphate catalyzed by ATP sulfurylase domain and in the second step, APS combines with another molecule of ATP to form PAPS and ADP catalyzed by APS kinase domain.
View Article and Find Full Text PDFCancer Res
May 2000
Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, United Kingdom.
The breast and ovarian cancer susceptibility gene product BRCA1 is a tumor suppressor, but its precise biochemical function remains unknown. The BRCA1 COOH terminus acts as a transcription activation domain, and germ-line cancer- predisposing mutations in this region abolish transcription activation, whereas benign polymorphisms do not. These results raise the possibility that loss of transcription activation by BRCA1 is crucial for oncogenesis.
View Article and Find Full Text PDFCancer Res
November 1999
Department of Hematology, Jichi Medical School, Tochigi, Japan.
We have reported that endothelial interleukin 8 (IL-8) induces apoptosis in leukemic cells in vitro and in vivo, and that interaction between endothelial cells and leukemic cells causes induction of apoptosis through the release of endothelial IL-8 (Y. Terui et al., Biochem.
View Article and Find Full Text PDFClin Chim Acta
August 1999
Department of Medicine, St. Michael's Hospital, University of Toronto, Ont., Canada.
Hepatic lipase (HL) is one of two major lipases released from the vascular bed by intravenous injection of heparin. HL hydrolyzes phospholipids and triglycerides of plasma lipoproteins and is a member of a lipase superfamily that includes lipoprotein lipase and pancreatic lipase. The enzyme can be divided into an NH2-terminal domain containing the catalytic site joined by a short spanning region to a smaller COOH-terminal domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!