c-Kit is a receptor tyrosine kinase that binds stem cell factor (SCF). Structurally, c-Kit contains five immunoglobulin-like domains extracellularly and a catalytic domain divided into two regions by a 77 amino acid insert intracellularly. Studies in white spotting and steel mice have shown that functional SCF and c-Kit are critical in the survival and development of stem cells involved in hematopoiesis, pigmentation and reproduction. Mutations in c-Kit are associated with a variety of human diseases. Interaction of SCF with c-Kit rapidly induces receptor dimerization and increases in autophosphorylation activity. Downstream of c-Kit, multiple signal transduction components are activated, including phosphatidylinositol-3-kinase, Src family members, the JAK/STAT pathway and the Ras-Raf-MAP kinase cascade. Structure-function studies have begun to address the role of these signaling components in SCF-mediated responses. This review will focus on the biochemical mechanism of action of SCF in hematopoietic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1357-2725(99)00078-3DOI Listing

Publication Analysis

Top Keywords

hematopoietic cells
8
scf c-kit
8
c-kit
7
early signaling
4
signaling pathways
4
pathways activated
4
activated c-kit
4
c-kit hematopoietic
4
cells c-kit
4
c-kit receptor
4

Similar Publications

Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals.

Stem Cell Rev Rep

January 2025

Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.

View Article and Find Full Text PDF

Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.

J Exp Med

March 2025

Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.

Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.

Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.

View Article and Find Full Text PDF

Objectives: Osteoblast is known to regulate hematopoiesis according to preclinical studies but the causal relationship in human remains uncertain. We aimed to evaluate causal relationships of bone mineral density (BMD) with blood cell traits using genetic data.

Methods: Summary statistics from the largest available genome-wide association study were retrieved for total body BMD (TBBMD), lumbar spine BMD (LSBMD), femoral neck BMD (FNBMD) and 29 blood cell traits including red blood cell, white blood cell and platelet-related traits.

View Article and Find Full Text PDF

Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .

Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!