Polygenic factors play important roles in animal models of substance abuse and susceptibility to dopaminergic neurodegeneration. Genetic factors are also likely to contribute to the etiology of human drug abuse disorders, and may alter human vulnerabilities to Parkinsonian neurodegeneration. The dopamine transporter (DAT; SLC6A3) is densely expressed by the dopaminergic midbrain neurons that play central roles in drug reward and is believed to be a primary site of action for cocaine reward. This transporter is necessary for the action of selective dopaminergic neurotoxins, and is uniquely expressed on neurons that are the primary targets of Parkinsonian neurodegeneration. To study possible influences of variant DAT expression on these processes, we have constructed transgenic mice (THDAT) in which tyrosine hydroxylase (TH) promoter sequences drive expression of a rat DAT cDNA variant, increase striatal DAT expression by 20-30%, and provide modest alterations in striatal levels of dopamine and its metabolites. THDAT mice habituate more rapidly to a novel environment than wildtype littermates. These animals display enhanced reward conferred by cocaine, as measured by conditioned place preference. However, locomotor responses to cocaine administration are similar to those of wildtype mice, except at high cocaine doses. THDAT mice display more than 50% greater losses of dopaminergic neurons following a course of MPTP treatment than do wildtype control mice. These results document a model for allelic variation at a gene locus that can exert significant effects in murine models of human substance abuse vulnerability and dopaminergic neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-328x(99)00235-1 | DOI Listing |
Biol Psychiatry
January 2025
Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:
Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA.
Background/objectives: Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease and contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with combined antiretroviral therapy (cART), HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation ( = 0.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA.
Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.
View Article and Find Full Text PDFNeuroscience
January 2025
Interdisciplinary Neuroscience Program, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:
While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!