In five generations of the French M-E kindred, 11 members are now known to be or have been affected by a form of spongiform encephalopathy previously recorded as Gerstmann-Sträussler-Scheinker disease. Mean age at onset was 28 years (range 21-34 years). In six instances, these patients were hospitalized in psychiatric institutions with various diagnoses, the most frequent being mania or mania-like symptoms. Dementia occurred progressively after a lengthy course. Histological studies showed atrophy of the cerebellar molecular layer, which contained kuru and multicentric plaques labelled with anti-prion protein antibodies. Spongiosis was not prominent and remained largely limited to the periphery of plaques; it was more marked in the thalamus, where plaques were scarce. A 192 base pair (bp) insert (eight extra repeats of 24 bp) in the octapeptide coding region of the prion protein gene (PRNP) within a codon-129 methionine allele was found in four symptomatic subjects. Early age at onset, the prominence of psychiatric symptoms and the long course of the disease are noticeable clinical features in this family with an inherited prion disease due to a new insertional mutation in PRNP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/122.12.2375 | DOI Listing |
J Neurogenet
January 2025
Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK.
Inherited prion diseases (IPD) secondary to mutations of the prion protein gene, exhibit diverse clinical phenotypes, capable of mimicking numerous primary neurodegenerative conditions. We describe the clinical phenotype and neuropathological findings in a family from County Limerick in Ireland presenting with Alzheimer's disease-like cognitive decline and motor symptoms caused by a novel missense mutation of This mutation occurs in the central lysine cluster (CLC; codon 101-110), resulting in substitution of threonine with isoleucine at codon 107 (T107I). This case series highlights that IPD can be hard to distinguish from overlapping clinical syndromes seen in other neurodegenerative diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.
Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.
View Article and Find Full Text PDFBMC Neurol
December 2024
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu, 210029, China.
Background: Fatal familial insomnia (FFI) is a rare autosomal dominant inherited disease and a type of prion diseases. We report a case of fatal familial insomnia (FFI) in a 52-year-old man who was initially misdiagnosed as Alzheimer's disease.
Case Presentation: The patient presented with persistent insomnia as the initial symptom, accompanied by cognitive impairment, autonomic dysfunction, and disorders of voluntary movement.
Sci Transl Med
December 2024
German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany.
Nucleic Acids Res
December 2024
Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!