Catecholamine regulation of nitric oxide (NO) production by IFNgamma-primed macrophages infected with Mycobacterium avium was investigated. Epinephrine treatment of IFNgamma-primed macrophages at the time of M. avium infection inhibited the anti-mycobacterial activity of the cells. The anti-mycobacterial activity of macrophages correlated with NO production. Using specific adrenergic receptor agonists, the abrogation of mycobacterial killing and decreased NO production by catecholamines was shown to be mediated via the beta2-adrenergic receptor. Elevation of intracellular cAMP levels mimicked the catecholamine-mediated inhibition of NO in both M. avium infected and LPS stimulated macrophages. Specific inhibitors of both adenylate cyclase and protein kinase A prevented the beta2-adrenoceptor-mediated inhibition of nitric oxide production. Beta2-adrenoreceptor stimulation at the time of M. avium infection of IFNgamma-primed macrophages also inhibited expression of iNOS mRNA. These observations show that catecholamine hormones can affect the outcome of macrophage-pathogen interactions and suggest that one result of sympathetic nervous system activation is the suppression of the capacity of macrophages to produce anti-microbial effector molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-5728(99)00134-4 | DOI Listing |
J Complement Integr Med
January 2025
Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background: Excessive fluoride exposure leads to increased oxidative stress and lipid peroxidation, causing harmful effects on the metabolic organs in the human body. Betanin, a pigment obtained from beetroot, is seen to have powerful anti-inflammatory and antioxidant. The study was conducted to determine the role of betanin in fluoride induced hepato-renal toxicity in Wistar rats.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.
Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Oregon, Eugene, OR, USA.
Background: Stiffening of the large arteries is a hallmark feature of vascular aging and is associated with cognitive impairment and Alzheimer's disease pathology. Increased large artery stiffness leads to higher-than-normal pulse pressure in the cerebral circulation, damaging endothelial cells. It is known that short-term exposure to stiffer large arteries causes cerebral artery endothelial dysfunction and hypoperfusion in young mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Geriatrics, Department of Internal Medicine, University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Nitric oxide (NO) is involved in synaptic transmission and cerebral plasticity, playing a role in the memory process. However, in states of brain inflammation, hypoxia, or ischemia, there is induction of inducible nitric oxide synthase (iNOS) expression by astrocytes and pyramidal cells in the brain. Under conditions of chronic activation, there is a decoupling of iNOS dimers, leading to a massive generation of superoxide anion and peroxynitrite, O2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Ohio State University, Columbus, OH, USA.
Background: Microglia, the innate immune cells of the brain, are a principal player in Alzheimer's Disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Aβ can elicit attempts from microglia to clear and degrade it using phagocytic machinery, spurring damaging neuroinflammation in the process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!