Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a search for radio continuum emission from the gamma-ray pulsar Geminga. We have used the VLA to image the location of the optical counterpart of Geminga at 74 and 326 MHz. We detect no radio counterpart. We derive upper limits to the pulse-averaged flux density of Geminga, taking diffractive scintillation into account. We find that diffractive scintillation is probably quenched at 74 MHz and does not influence our upper limit, S<56 mJy (2 sigma), but that a 95% confidence level at 326 MHz is S<5 mJy. Owing to uncertainties on the other low-frequency detections and the possibility of intrinsic variability or extrinsic variability (refractive interstellar scintillation) or both, our nondetections are nominally consistent with these previous detections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/312406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!