The t(11;22) is the only known recurrent, non-Robertsonian constitutional translocation. We have analyzed t(11;22) balanced-translocation carriers from multiple unrelated families by FISH, to localize the t(11;22) breakpoints on both chromosome 11 and chromosome 22. In 23 unrelated balanced-translocation carriers, the breakpoint was localized within a 400-kb interval between D22S788 (N41) and ZNF74, on 22q11. Also, 13 of these 23 carriers were tested with probes from chromosome 11, and, in each, the breakpoint was localized between D11S1340 and APOA1, on 11q23, to a region

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288370PMC
http://dx.doi.org/10.1086/302666DOI Listing

Publication Analysis

Top Keywords

multiple unrelated
8
balanced-translocation carriers
8
breakpoint localized
8
clustered 11q23
4
11q23 22q11
4
22q11 breakpoints
4
breakpoints meiotic
4
meiotic malsegregation
4
malsegregation multiple
4
t1122
4

Similar Publications

Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase.

Mol Cell

January 2025

MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. Electronic address:

Unassembled and partially assembled subunits of multi-protein complexes have emerged as major quality control clients, particularly under conditions of imbalanced gene expression such as stress, aging, and aneuploidy. The factors and mechanisms that eliminate such orphan subunits to maintain protein homeostasis are incompletely defined. Here, we show that the UBR4-KCMF1 ubiquitin ligase complex is required for the efficient degradation of multiple unrelated orphan subunits from the chaperonin, proteasome cap, proteasome core, and a protein targeting complex.

View Article and Find Full Text PDF

Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.

View Article and Find Full Text PDF

Importance: Variation in nicastrin (NCSTN) is associated with a monogenic subtype of hidradenitis suppurativa. Dysregulation of humoral immunity has been suggested as a potential mechanistic link between NCSTN variation and hidradenitis suppurativa. There is a paucity of biomarkers that can predict disease-associated variation.

View Article and Find Full Text PDF

Recent advancements of large language models (LLMs) like generative pre-trained transformer 4 (GPT-4) have generated significant interest among the scientific community. Yet, the potential of these models to be utilized in clinical settings remains largely unexplored. In this study, we investigated the abilities of multiple LLMs and traditional machine learning models to analyze emergency department (ED) reports and determine if the corresponding visits were due to symptomatic kidney stones.

View Article and Find Full Text PDF

Oocyte/zygote/embryo maturation arrest: a clinical study expanding the phenotype of NOBOX variants.

J Assist Reprod Genet

January 2025

Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.

Article Synopsis
  • The study investigates the link between novel NOBOX gene variants and a specific infertility issue known as oocyte, zygote, and embryo maturation arrest (OZEMA) in women.
  • Researchers found two different NOBOX variants in women undergoing IVF, one associated with oocyte maturation arrest and the other with embryonic developmental arrest.
  • The findings suggest that NOBOX variants may influence not only primary ovarian insufficiency but also the later stages of oocyte and embryo development, indicating its crucial role in female fertility.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!