Indole derivatives as neuroprotectants.

Life Sci

Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Published: December 1999

It seems to be satisfactorily proved that reactive oxygen species (ROS) participate in numerous pathological processes in the nervous system (NS). Compounds able to interfere with the action of ROS might be useful in prevention and treatment of these pathologies. The search is focused on compounds with a suitable spectrum of pharmacological and pharmacokinetic properties, among which indole derivatives are distinct group with great potential to be further developed. The paper presents an overview of indole derived compounds in which protective action has been demonstrated in the NS in situations in which ROS are excessively generated, such as chemically induced oxidative stress, hypoxia/reoxygenation, ischemia/reperfusion. These compounds include indoleamines (melatonin), carbazoles (carvedilol), carbolines (tetrahydrocarbolines, pyrimidoindoles, vinpocetine). Special attention is paid to the gamma-carboline stobadine. A range of effects which seem to be associated with its neuroprotective actions (antioxidant and ROS scavenging effects, capability to pass the hematoencephalic barrier, pharmacokinetic properties, etc.) are considered. A novel compound with pyrimidoindole structure (U-101033E) is mentioned. Attention is drawn also to the neurotoxic potential demonstrated in some carbolines (2-amino-alpha-carboline, halogenated tetrahydro-beta-carboline "TaClo", harmane, norharmane). The indole nucleus seems to be a promising basis for design and synthesis of new derivatives able to protect the NS against oxidative stress in a variety of acute and chronic NS pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0024-3205(99)00453-1DOI Listing

Publication Analysis

Top Keywords

indole derivatives
8
pharmacokinetic properties
8
oxidative stress
8
indole
4
derivatives neuroprotectants
4
neuroprotectants satisfactorily
4
satisfactorily proved
4
proved reactive
4
reactive oxygen
4
oxygen species
4

Similar Publications

Objective: To elucidate the metabolic mechanisms by which acteoside (ACT) isolated from alleviates cancer-related fatigue (CRF) in a murine model of colon cancer with cachexia.

Methods: BALB/c mice inoculated with C26 colon cancer cells were treated with paclitaxel (PTX, 10 mg/kg) and ACT (100 mg/kg) alone or in combination for 21 days. Fatigue-associated behaviors, tumor inhibition rate, and skeletal muscle morphology assessed by hematoxylin-eosin (H&E) staining and electron microscopy were evaluated.

View Article and Find Full Text PDF

Asymmetric synthesis presents many challenges, with the selective formation of chiral bridged polyheterocycles being a notable example. Cycloadditions using bicyclo[1.1.

View Article and Find Full Text PDF

The Ph3P-I2-mediated reactions between isatins and amines were extensively investigated leading to the discovery of highly selective and divergent routes toward the synthesis of two distinct classes of indole-based frameworks. Through a strategic design of the reaction paths, we overcome potential side reactions to achieve convenient and straightforward one-pot methods to access either indoloquinazolines with C-12 carboxamide or 2-aminosubstituted indol-3-ones using the same reagent system. Mechanistic studies reveal the role of Ph3P-I2 in governing product selectivity, providing an efficient route to novel fused-indolone derivatives with promising applications in drug discovery and medicinal chemistry.

View Article and Find Full Text PDF

Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism.

Int J Biol Macromol

January 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.

Fucoidan, a water-soluble polysaccharide derived from marine organisms, has garnered significant attention for its ability to regulate gut microbiota and its anti-tumor properties. However, the existence of a correlation between the anti-tumor effect of fucoidan and its regulation of the gut microbiota remains unknown. In pursuit of this objective, we culled the gut microbiota of mice with broad-spectrum antibiotics to generate pseudo-sterile tumor-bearing mice.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no targeted treatments currently available. TNBC cells participate in metabolic symbiosis, a process that optimizes tumor growth by balancing metabolic processes between glycolysis and oxidative phosphorylation through increased activity by the enzyme lactate dehydrogenase B (LDHB). Metabolic symbiosis allows oxidative cancer cells to function at a similar rate as glycolytic cancer cells, increasing overall metabolic activity and proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!