The p73 gene encodes a protein that shares structural and functional homologies with the p53 tumor suppressor protein. To investigate the mechanism of transcriptional regulation of the p73 gene, we isolated a genomic DNA fragment spanning the 5' upstream region of the human p73 gene and characterized the promoter region. Unlike the p53 gene promoter, the human p73 gene promoter contained a putative TATA-box, and did not exhibit any extended homology to the p53 gene. Two CpG islands were located in the 5' upstream region. Transient transfection assays using progressive truncations of the p73 promoter showed that deletion from -119 to +19 relative to exon 1 resulted in a 13- to 20-fold reduction in the p73 promoter activity, suggesting that the elements for basal promoter activity exist in this region, where putative Sp1, AP-2 and Egr-1, 2, 3 sites are located and CpG dinucleotides are especially concentrated.

Download full-text PDF

Source
http://dx.doi.org/10.1093/dnares/6.5.347DOI Listing

Publication Analysis

Top Keywords

p73 gene
20
human p73
12
promoter region
8
region human
8
upstream region
8
p53 gene
8
gene promoter
8
p73 promoter
8
promoter activity
8
promoter
7

Similar Publications

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF
Article Synopsis
  • - TP73, part of the TP53 gene family, produces different protein variants (TAp73 and ΔTAp73) with opposing functions through various genetic mechanisms.
  • - Newly developed antibodies for these p73 variants reveal that TAp73 is present in multiciliated epithelial cells, while ΔTAp73 marks non-proliferative basal cells in squamous epithelium.
  • - In cervical squamous cell carcinomas, p73α is commonly expressed and linked to lower tumor grades, whereas TAp73 appears less frequently and does not show significant associations with cancer characteristics.
View Article and Find Full Text PDF

BRD4 sustains p63 transcriptional program in keratinocytes.

Biol Direct

November 2024

Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.

Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown.

View Article and Find Full Text PDF

Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity.

Nucleic Acids Res

December 2024

Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA.

The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression.

View Article and Find Full Text PDF

Calcium oxalate (CaOx) nephrolithiasis constitutes approximately 75% of nephrolithiasis cases, resulting from the supersaturation and deposition of CaOx crystals in renal tissues. Despite their prevalence, precise biomarkers for CaOx nephrolithiasis are lacking. With advances in high-throughput sequencing, we aimed to identify biomarkers of CaOx nephrolithiasis by combining two CaOx nephrolithiasis datasets (GSE73680 and GSE117518).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!