Molecular evidence for a new bacteriophage of Borrelia burgdorferi.

J Bacteriol

Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA.

Published: December 1999

AI Article Synopsis

  • Researchers isolated a 32-kb double-stranded linear DNA molecule from the cell-free supernatant of Borrelia burgdorferi culture, which originates from its circular plasmids.
  • Electron microscopy revealed bacteriophage particles, characterized by a 55 nm polyhedral head and a 100-nm-long tail.
  • The phage is produced at low levels in certain B. burgdorferi strains and can be induced to higher levels using the chemical MNNG, marking the first molecular characterization of a bacteriophage linked to B. burgdorferi.

Article Abstract

We have recovered a DNase-protected, chloroform-resistant molecule of DNA from the cell-free supernatant of a Borrelia burgdorferi culture. The DNA is a 32-kb double-stranded linear molecule that is derived from the 32-kb circular plasmids (cp32s) of the B. burgdorferi genome. Electron microscopy of samples from which the 32-kb DNA molecule was purified revealed bacteriophage particles. The bacteriophage has a polyhedral head with a diameter of 55 nm and appears to have a simple 100-nm-long tail. The phage is produced constitutively at low levels from growing cultures of some B. burgdorferi strains and is inducible to higher levels with 10 microg of 1-methyl-3-nitroso-nitroguanidine (MNNG) ml(-1). In addition, the prophage can be induced with MNNG from some Borrelia isolates that do not naturally produce phage. We have isolated and partially characterized the phage associated with B. burgdorferi CA-11.2A. To our knowledge, this is the first molecular characterization of a bacteriophage of B. burgdorferi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC103694PMC
http://dx.doi.org/10.1128/JB.181.23.7308-7313.1999DOI Listing

Publication Analysis

Top Keywords

borrelia burgdorferi
8
burgdorferi
6
molecular evidence
4
bacteriophage
4
evidence bacteriophage
4
bacteriophage borrelia
4
burgdorferi recovered
4
recovered dnase-protected
4
dnase-protected chloroform-resistant
4
chloroform-resistant molecule
4

Similar Publications

A novel panel of peptide for serological identification of Borrelia burgdoferi sensu stricto, Borrelia garinii and Borrelia afzelii was developed and assessed in this study. The diagnostic algorithm of the novel test was initially trained testing 10 US human sera including 3 early-stage and 3 late-stage Lyme disease positive sera, 2 sera positive for Babesia and 2 sera positive for Syphilis, all purchased from a private biorepository. Findings were then corroborated testing (a) 33 additional EU follow-up positive sera from seroconverted patients bitten by ticks that tested positive for B.

View Article and Find Full Text PDF

Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen.

PLoS Pathog

January 2025

Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.

Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown.

View Article and Find Full Text PDF

is a vector of several human pathogens in the United States, including the cause of Lyme disease, and Powassan virus (POWV), an emerging cause of severe encephalitis. Skin biopsies from tick bite sites are frequently collected and tested for the presence of spirochetes ( spp.), which remain elusive.

View Article and Find Full Text PDF

Prevalence of Borrelia burgdorferi sensu lato infection in the Czech Republic.

Int J Med Microbiol

January 2025

Global Vaccines, and Anti-infectives Medical Affairs, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, USA. Electronic address:

Introduction: Lyme borreliosis (LB), an infection caused by Borrelia burgdorferi sensu lato (Bbsl), is the most common tick-borne disease in Europe. To further characterize the LB burden in the Czech Republic, we conducted a seroprevalence study and estimated the incidence of symptomatic Bbsl infections.

Methods: Anti-Bbsl IgM and IgG antibodies were detected in sera collected from the adult population in 2011 -2012 by enzyme-linked immunosorbent assay and immunoblot tests at the National Reference Laboratory.

View Article and Find Full Text PDF

CCL17 influences Borrelia burgdorferi infection in the heart.

J Infect Dis

January 2025

Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06510, USA.

Lyme disease, caused by Borrelia burgdorferi, is transmitted to humans by Ixodes ticks. CCL17 is a potent chemokine that plays important roles in diverse illnesses, including autoimmune and infectious diseases. CCL17 knockout (KO) mice, infected with B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!