Cardiovascular abnormalities in transgenic mice with reduced brown fat: an animal model of human obesity.

Circulation

Charles A. Dana Research Institute and the Harvard-Thorndike Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Published: November 1999

Background: A new model of murine obesity has recently been developed through transgenic ablation of brown adipose tissue that manifests typical metabolic complications of obesity, including insulin resistance and non-insulin-dependent diabetes mellitus. The cardiovascular phenotype has not been defined.

Methods And Results: Transthoracic echocardiography, aortic catheterization, isolated whole-heart studies, and morphometric histology defined cardiac structure and function in 30 transgenic mice with reduced brown fat and 30 matched wild-type controls. Obesity was indicated by a 77% increase in body weight and was accompanied by elevated systemic pressures (mean aortic blood pressure 85+/-1 versus 66+/-2 mm Hg; P<0.01), left ventricular dilation and hypertrophy (mass/body weight 4.0+/-0.2 versus 2.7+/-0.3 mg/g; P<0.01), and high cardiac output (cardiac index 3.2+/-0.4 versus 2.4+/-0.1 mL x kg(-1) x min(-1); P<0.01). Baseline functional parameters assessed in vitro were not different, but after imposition of zero-flow ischemia, significant relaxation impairment developed in obese mice. Although morphometrically determined myocyte diameters were similar, the percentage of interstitial fibrosis was significantly increased in transgenic mice compared with wild-type controls (7.5+/-2% versus 4. 2+/-0.2%; P<0.01).

Conclusions: Transgenic ablation of brown adipose tissue is associated not only with obesity but also with systemic hypertension, left ventricular hypertrophy with eccentric remodeling and fibrosis, and high cardiac output, a unique constellation of findings strikingly similar to that seen in human obesity. Mice with reduced brown fat may serve as a new model for the cardiovascular morbid complications associated with obesity in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.100.21.2177DOI Listing

Publication Analysis

Top Keywords

transgenic mice
8
mice reduced
8
reduced brown
8
brown fat
8
cardiovascular abnormalities
4
abnormalities transgenic
4
fat animal
4
animal model
4
model human
4
obesity
4

Similar Publications

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Newly Proposed Dose of Daclatasvir to Prevent Lethal SARS-CoV-2 Infection in Human Transgenic ACE-2 Mice.

Viruses

November 2024

Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil.

Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompromised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nirmatrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is clinically effective but has been associated with viral rebound and antiviral resistance.

View Article and Find Full Text PDF

Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21.

View Article and Find Full Text PDF

Retrotransposon Gag-like 4 (), a gene acquired from a retrovirus, is a causative gene in autism spectrum disorder. Its knockout mice exhibit increased impulsivity, impaired short-term spatial memory, failure to adapt to novel environments, and delayed noradrenaline (NA) recovery in the frontal cortex. However, due to its very low expression in the brain, it remains unknown which brain cells express RTL4 and its dynamics in relation to NA.

View Article and Find Full Text PDF

Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells.

Int J Mol Sci

December 2024

Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA.

The cerebellum, a key target of ethanol's toxic effects, is associated with ataxia following alcohol consumption. However, the impact of ethanol on Purkinje cell (PC) mitochondria remains unclear. To investigate how ethanol administration affects mitochondrial dynamics in cerebellar Purkinje cells, we employed a transgenic mouse model expressing mitochondria-targeted yellow fluorescent protein in Purkinje cells (PC-mito-eYFP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!