DNA sequencing revealed seven different glucose-6-phosphate dehydrogenase (G6PD) mutations in G6PD deficient subjects from 10 Polish families. Among them we found two novel mutations: 679C-->T (G6PD Radlowo, class 2) and a 1006A-->G (G6PD Torun, class 1). Variant G6PD Radlowo was characterized biochemically. Both novel mutations were analyzed using a model of the tertiary structure of the human enzyme. The main chain of G6PD Torun is different from the wild-type G6PD. The remaining mutations identified by us in deficient Polish patients were: 542A-->T (G6PD Malaga), 1160G-->A (G6PD Beverly Hills), 1178G-->A (G6PD Nashville), 1192G-->A (G6PD Puerto Limon), and 1246G-->A (G6PD Tokyo). Variant Tokyo was found in four families. In one of them favism was the first clinical sign of G6PD deficiency and chronic nonspherocytic hemolytic anemia (CNSHA) was diagnosed later. Variants G6PD Nashville and G6PD Puerto Limon were accompanied by the silent mutation 1311C-->T of the G6PD gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1098-1004(199912)14:6<477::AID-HUMU6>3.0.CO;2-X | DOI Listing |
BMC Cancer
January 2025
Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.
View Article and Find Full Text PDFCrit Rev Oncog
January 2025
Bioinformatics, Genomics and Proteomics, University of California, Irvine, CA, USA.
Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme in the pentose phosphate pathway (PPP), a critical glucose metabolism pathway linked to cancer cell proliferation and metastasis. Inhibiting the PPP presents a promising approach to cancer treatment. The G6PD enzyme structure was obtained from the Protein Data Bank (PDB).
View Article and Find Full Text PDFLancet Infect Dis
January 2025
Institut Pasteur, Université Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Paris, France. Electronic address:
Background: Plasmodium vivax forms dormant liver stages (hypnozoites) that can reactivate weeks to months after primary infection. Radical cure requires a combination of antimalarial drugs to kill both the blood-stage and liver-stage parasites. Hypnozoiticidal efficacy of the liver-stage drugs primaquine and tafenoquine cannot be estimated directly because hypnozoites are undetectable.
View Article and Find Full Text PDFActa Med Philipp
December 2024
Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila.
Background: As social media continue to grow as popular and convenient tools for acquiring and disseminating health information, the need to investigate its utilization by laypersons encountering common medical issues becomes increasingly essential.
Objectives: This study aimed to analyze the content posted in Facebook groups for Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency and how these engage the members of the group.
Methods: This study employed an inductive content analysis of user-posted content in both public and private Facebook groups catering specifically to G6PD deficiency.
Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.
Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!