Behavioral and neuroendocrine responses underlying systemic osmoregulation are under the concerted control of centrally located osmoreceptors and cerebrospinal fluid (CSF) Na+ concentration ([Na+]) detectors. Although the process underlying osmoreception is understood, the mechanism by which [Na+] is detected and integrated with cellular information derived from osmoreceptors is unknown. Here, we show that shifts in extracellular [Na+] ([Na+]0) cause proportional changes in the relative Na+ permeability of mechanosensitive cation channels responsible for signal transduction in the osmosensory neurons of the supraoptic nucleus. This effect causes the generation of Na+ specific receptor potentials under isotonic conditions and modulates osmoreceptor potentials and electrical responsiveness during osmotic perturbation. These results provide a cellular basis for Na+-sensing and for the coordinated detection of CSF [Na+] and osmolality in central osmoregulatory neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0896-6273(00)80858-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!