Lipases are key enzymes in the hydrolysis of triglycerides, phospholipids, and cholesteryl esters, including those of dietary origin. Their actions are essential to maintain lipid homeostasis and cardiovascular health. This report describes the finding and characterization of a new lipase of endothelial origin, one that may play an important role in plasma high-density lipoprotein metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1753-4887.1999.tb01814.x | DOI Listing |
J Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFNutrients
December 2024
Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism.
View Article and Find Full Text PDFRes Sq
November 2024
Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY 10016.
The effect of increased triglycerides (TGs) as an independent factor in atherosclerosis development has been contentious, in part, because severe hypertriglyceridemia associates with low levels of low-density lipoprotein cholesterol (LDL-C). To test whether hyperchylomicronemia, in the absence of markedly reduced LDL-C levels, contributes to atherosclerosis, we created mice with induced whole-body lipoprotein lipase (LpL) deficiency combined with LDL receptor (LDLR) deficiency. On an atherogenic Western-type diet (WD), male and female mice with induced global LpL deficiency (i ) and LDLR knockdown ( ) developed hypertriglyceridemia and elevated cholesterol levels; all the increased cholesterol was in chylomicrons or large VLDL.
View Article and Find Full Text PDFCryobiology
December 2024
Institute of Entomology, Guizhou University/Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou, Guiyang, 550025, China.
Exp Eye Res
November 2024
Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India. Electronic address:
Retinal pericytes (PCs) are contractile microvascular smooth muscle cells that wrap around the endothelial cells (ECs) maintaining intact retinal vasculature (RV) with a 1:1 ratio. Microvascular complications like diabetic retinopathy (DR) due to chronic diabetes causes apoptotic loss of PCs followed by diminished vessel stability, EC apoptosis, and ischemia, leading to retinal angiogenesis, and eventually severe vision loss. This study aimed to analyze the proteins in PCs isolated from the RV of diabetic human donor eyes and compare them with remaining mixed population (MP) of retinal vascular cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!