RBP, a transcriptional repressor, is intricately involved in Epstein-Barr virus (EBV) transformation of human B cells. The EBV nuclear proteins EBNA-2, -3, -4 and -6 all utilize RBP to regulate the transcription of both cellular and viral genes. This study investigates the isoforms of the RBP protein in Burkitt's lymphoma (BL) cells and in EBV-transformed lymphoblastoid cell lines (LCLs). Two-dimensional gel electrophoresis showed the presence of two different cellular isoforms of RBP; the molecular masses and isoelectric points of these two isoforms corresponded to RBP-Jkappa and RBP-2N. Fractionation studies and green fluorescent protein (GFP)-tagged expression studies demonstrated that both RBP isoforms were located predominantly in the cell nucleus. Interestingly, GFP-tagged RBP-Jkappa showed diffuse, uniform nuclear staining, whereas GFP-tagged RBP-2N showed a discrete nuclear pattern, demonstrating differences between the two isoforms. Within the nuclear fraction of EBV-negative BL cells, RBP existed both in a free form and bound to chromatin, whereas in LCLs the intranuclear RBP was predominantly chromatin-bound. Expression of the EBV latent proteins was found to lead to the sequestering of RBP from the cytoplasm into the cell nucleus and to an increase in the chromatin-bound forms of RBP.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-80-12-3217DOI Listing

Publication Analysis

Top Keywords

rbp
10
transcriptional repressor
8
cells rbp
8
isoforms rbp
8
cell nucleus
8
isoforms
5
characterization transcriptional
4
repressor rbp
4
rbp epstein-barr
4
epstein-barr virus-transformed
4

Similar Publications

Objective: There has been a call for neuroscientific studies of spiritual experiences due to their global prevalence, significant impact, and importance for understanding the mind-brain problem. Mediumship is a spiritual experience where individuals claim to communicate with or be influenced by deceased persons or non-material entities. We assessed whether mediums possess specific genetic alterations.

View Article and Find Full Text PDF

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.

Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.

View Article and Find Full Text PDF

Unlabelled: APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown.

View Article and Find Full Text PDF

Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNA fate decision.

Mol Cell

January 2025

Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria. Electronic address:

The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!