Survival and function of bioengineered cardiac grafts.

Circulation

Division of Cardiovascular Surgery, The Toronto Hospital, Department of Surgery, University of Toronto, Canada.

Published: November 1999

Introduction: Patients with congenital heart disease frequently require graft material for repair of cardiac defects. However, currently available grafts lack growth potential and are noncontractile and thrombogenic. We have developed a viable cardiac graft that contracts spontaneously in tissue culture by seeding cells derived from fetal rat ventricular muscle into a biodegradable material. We report our investigations of the in vitro and in vivo survival and function of this bioengineered cardiac graft.

Methods And Results: A cardiomyocyte-enriched cell inoculum derived from fetal rat ventricular muscle was seeded into a piece of Gelfoam (Upjohn, Ontario, Canada), a biodegradable gelatin mesh, to form the graft. For in vitro studies, growth patterns of the cells within the graft were evaluated by constructing growth curves and by histologic examination; in in vivo studies, the graft was cultured for 7 days and then implanted either into the subcutaneous tissue of adult rat legs or onto myocardial scar tissue in a cryoinjured rat heart. Five weeks later, the graft was studied histologically. The inoculated cells attached to the gelatin mesh and grew in 3 dimensions in tissue culture, forming a beating cardiac graft. In both the subcutaneous tissue and the myocardial scar, blood vessels grew into the graft from the surrounding tissue. The graft implanted into the subcutaneous tissue contracted regularly and spontaneously. When implanted onto myocardial scar tissue, the cells within the graft survived and formed junctions with the recipient heart cells.

Conclusions: Fetal rat ventricular cells can grow 3-dimensionally in a gelatin mesh. The cells in the graft formed cardiac tissue and survived and contracted spontaneously both in tissue culture and after subcutaneous implantation. Future versions of this bioengineered cardiac graft may eventually be used to repair cardiac defects.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.100.suppl_2.ii-63DOI Listing

Publication Analysis

Top Keywords

bioengineered cardiac
12
graft
12
cardiac graft
12
tissue culture
12
fetal rat
12
rat ventricular
12
gelatin mesh
12
cells graft
12
subcutaneous tissue
12
myocardial scar
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!