Insulin delivery with plasmid DNA.

Hum Gene Ther

Department of Molecular Biology, Vical, Inc., San Diego, CA 92121, USA.

Published: November 1999

Success in controlling hyperglycemia in type I diabetics will require a restoration of basal insulin. To this end, three plasmid DNAs (pDNA) encoding preproinsulin were compared for constitutive expression and processing to insulin in nonendocrine cells in vitro. The pDNAs were designed to express rat proinsulin I (VR-3501), rat proinsulin I with the B10 aspartic acid point mutation (VR-3502), and a derivative of VR-3502 with a furin cleavage site added at the B-chain and C-peptide junction (VR-3503). Cells transfected with VR-3501 or VR-3502 were able to secrete only proinsulin, whereas transfection with VR-3503 yielded 30-70% mature insulin, which could be increased to >99% by cotransfection with a furin expression plasmid (VR-3505). The insulin produced was biologically active. The bilateral injection of 100 microg of VR-3502 plasmid into the tibialis anterior muscles of mice on two consecutive days yielded, on average, several hundred picograms of heterologous proinsulin per milliliter of serum. In BALB/c mice, serum proinsulin peaked 7-14 days postinjection and declined to preinjection levels by days 21-28. In athymic nude mice, serum proinsulin was sustained for at least 6 weeks. The therapeutic efficacy of delivering insulin via muscle injection of pDNA was evaluated in athymic nude mice made diabetic with the beta cell toxin streptozotocin (STZ). All animals given control DNA died within 1 week of receiving STZ while 40% of the mice coinjected with plasmids VR-3503 and VR-3505 lived through the duration of the 4-week experiment. Muscles of the surviving animals contained 17-100 ng of immune-reactive insulin (IRI), 86-94% of which was mature insulin. The results suggest that heterologous insulin made in muscle increased the survival rate. We propose that insulin plasmid expression in skeletal muscle may be a valid approach to basal insulin delivery. The feasibility of plasmid DNA-based delivery of basal insulin was investigated. An expression system consisting of pDNAs encoding a selectively mutated rat preproinsulin and mouse furin was developed and characterized in vitro and in vivo. When injected with preproinsulin pDNA, the mouse tibialis anterior muscle expressed and released proinsulin into serum at levels comparable to normal basal insulin in rodents. These heterologous proinsulin levels were sustained for several weeks in immune-compromised nondiabetic mice. Mouse muscle coinjected with a pDNA encoding the endopeptidase furin and a pDNA encoding a pre-proinsulin modified to contain two furin cleavage sites produced fully processed insulin. This muscle-made insulin appears to have contributed to the survival of mice treated with a highly diabetogenic dose of streptozotocin, a beta cell toxin. The results demonstrate that skeletal muscle is able to express and deliver therapeutic insulin from plasmid DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1089/10430349950016672DOI Listing

Publication Analysis

Top Keywords

insulin
16
basal insulin
16
pdna encoding
12
insulin delivery
8
plasmid dna
8
proinsulin
8
rat proinsulin
8
furin cleavage
8
mature insulin
8
tibialis anterior
8

Similar Publications

Background: Gestational diabetes mellitus is hyperglycemia in special populations (pregnant women), however gestational diabetes mellitus (GDM) not only affects maternal health, but also has profound effects on offspring health. The prevalence of gestational diabetes in my country is gradually increasing.

Objective: To study the application effect of self-transcendence nursing model in GDM patients.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.

View Article and Find Full Text PDF

This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!