Purpose: The aim of this study was to evaluate the efficacy of conventional antiepileptic drugs (AEDs) against the generalized tonic-clonic seizures in mice subjected to the subconvulsive doses of N-methyl-D-aspartate (NMDA) or kainate.
Methods: Mice were given NMDA and kainate in the doses of 50.0 and 9.0 mg/kg i.p., respectively [i.e., equal to 75% of their CD16 values (convulsive dose in 16% of the animals studied)]. Subsequently the anticonvulsive potential of conventional AEDs against the maximal electroshock-induced seizures was estimated. Where necessary, the plasma levels of AEDs were assessed.
Results: NMDA or kainate application did not affect the electroconvulsive threshold. NMDA, but not kainate, diminished the antiepileptic activity of diazepam (DZP) and carbamazepine (CBZ), increasing their 50% effective doses (ED50s) from 14.1 and 8.6 to 19.0 and 12.1 mg/kg i.p., respectively. Neither NMDA nor kainate affected the ED50 for valproate (VPA), phenobarbital (PB), or diphenylhydantoin (DPH) against electroconvulsions. NMDA-evoked effects were reversed with the use of the NMDA antagonist, D-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP 40116) and were not accompanied by the alterations in the free plasma levels of AEDs.
Conclusions: The NMDA-mediated events, but not kainate-related ones, seem to be involved in the protective action of DZP and CBZ against maximal electroshock-induced seizures. Moreover, it might be concluded that when subthreshold activation of NMDA receptors adds to other epileptogenic factors, DZP and CBZ are less efficacious. Presented data indicate that in such situations, adding the NMDA receptor antagonist (at very low doses) to the AED may yield beneficial therapeutic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1528-1157.1999.tb02033.x | DOI Listing |
Neuropharmacology
December 2024
Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Ul. Mickiewicza 2A, 15-222, Białystok, Poland.
Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany.
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.
View Article and Find Full Text PDFDev Neurosci
October 2024
Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA.
Introduction: Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.
Methods: The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats.
Front Pharmacol
October 2024
Laboratory for the Research of the Mechanisms of Regulation and Compensation of Nervous System Excitability Pathologies, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia.
Amidine-containing compounds are primarily known as antiprotozoal agents (pentamidine, diminazene, furamidine) or as serine protease inhibitors (nafamostat, sepimostat, camostat, gabexate). DAPI is widely recognized as a fluorescent DNA stain. Recently, it has been shown that these compounds also act as NMDA receptor inhibitors.
View Article and Find Full Text PDFSchizophr Res
December 2024
The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!