Polyglutamylation is a posttranslational modification of tubulin that is very common in neurons and ciliated or flagellated cells. It was proposed to regulate the binding of microtubule associated proteins (MAPs) and molecular motors as a function of the length of the polyglutamyl side-chain. Though much less common, this modification of tubulin also occurs in proliferating cells like HeLa cells where it is associated with centrioles and with the mitotic spindle. Recently, we partially purified tubulin polyglutamylase from mouse brain and described its enzymatic properties. In this work, we focused on tubulin polyglutamylase activity from HeLa cells. Our results support the existence of a tubulin polyglutamylase family composed of several isozymic variants specific for alpha- or beta-tubulin subunits. In the latter case, the specificity probably also concerns the different beta-tubulin isotypes. Interestingly, we found that tubulin polyglutamylase activity is regulated in a cell cycle dependent manner and peaks in G(2)-phase while the level of glutamylated tubulin peaks in mitosis. Consistent results were obtained by treating the cells with hydroxyurea, nocodazole or taxotere. In particular, in mitotic cells, tubulin polyglutamylase activity was always low while glutamylation level was high. Finally, tubulin polyglutamylase activity and the level of glutamylated tubulin appeared to be inversely related. This paradox suggests a complex regulation of both tubulin polyglutamylase and the reverse deglutamylase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.112.23.4281DOI Listing

Publication Analysis

Top Keywords

tubulin polyglutamylase
32
polyglutamylase activity
16
tubulin
12
hela cells
12
isozymic variants
8
cell cycle
8
modification tubulin
8
level glutamylated
8
glutamylated tubulin
8
cells
7

Similar Publications

Classical cell cycle kinase limits tubulin polyglutamylation and cilium stability.

J Cell Biol

February 2025

Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.

Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.

View Article and Find Full Text PDF

Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes.

EMBO J

January 2025

Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France.

The microtubule cytoskeleton is a major driving force of neuronal circuit development. Fine-tuned remodelling of this network by selective activation of microtubule-regulating proteins, including microtubule-severing enzymes, has emerged as a central process in neuronal wiring. Tubulin posttranslational modifications control both microtubule properties and the activities of their interacting proteins.

View Article and Find Full Text PDF

Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear.

View Article and Find Full Text PDF

Polyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3.

View Article and Find Full Text PDF

Background: Tubulin polyglutamylase complex subunit 2 (TPGS2) is an element of the neuronal polyglutamylase complex that plays a role in the post-translational addition of glutamate residues to C-terminal tubulin tails. Recent research has shown that TPGS2 is associated with some tumors, but the roles of TPGS2 in tumor immunity remain unclear.

Methods: The research data were mainly sourced from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!