We have isolated cosmids that complement a Pseudomonas aeruginosa export-impaired mutant by increasing growth on lipid agar, a medium that requires lipase expression and export. These cosmids encode a previously unidentified lipase, LipC, which has high homology to the P. aeruginosa lipA gene product. Like LipA, LipC activity requires the chaperone activity of the lipB gene product and a functional xcp gene cluster for export. However, expression of LipC is barely detectable in a wild-type background. Transposon insertions that increase lipC promoter activity have been obtained that inactivate two pilus biogenesis genes, pilX and pilY1. This suggests that these proteins either directly or indirectly repress the expression of LipC and may be involved in transducing an extracellular signal that regulates this lipase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.1999.01601.x | DOI Listing |
Sci Rep
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:
Biofilm formation on biological and material surfaces represents a heavy health and economic burden for both patient and society. To contrast this phenomenon, medical devices combining antibacterial and pro-wound healing abilities are a promising strategy. In the present work, Xanthan gum/Guar gum (XG/GG)-based scaffolds were tuned with thymol and Zn to obtain wound dressings that combine antibacterial and antibiofilm properties and favour the healing process.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Recurrent aphthous stomatitis (RAS) is a common condition that manifests as ulcerative lesions in the oral mucosa. In this study, bilayer, mucoadhesive nanofibers loaded with pomegranate flower extract (PFE) were prepared using thiolated gelatin (TGel) and thiolated chitosan (TCS) as the active layer and drug-free polycaprolactone (PCL) as the backing layer. Gelatin (Gel) and chitosan (CS) were successfully thiolated (proven by Ellman's assay, solubility, H NMR, FTIR, Raman spectroscopy, and XRD) and electrospun into active nanofibrous layers with a diameter of 356.
View Article and Find Full Text PDFChem Phys Lipids
January 2025
Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain. Electronic address:
We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!