Lesion-induced inflammatory responses in both brain and spinal cord have recently become a topic of active investigation. Using C57BL/6J mice, we compared the tissue reaction in these two central nervous system (CNS) compartments with mechanical lesions of similar size involving both grey and white matter. This evaluation included the quantitative assessment of neutrophils, lymphocytes and activated macrophages/microglia, as well as astrocyte activation, upregulation of vascular cell adhesion molecules (ICAM-1, VCAM-1, PECAM) and the extent of blood-brain barrier (BBB) breakdown. Time points analysed post-lesioning included 1, 2, 4 and 7 days (as well as 10 and 14 days for the BBB). We found clear evidence that the acute inflammatory response to traumatic injury is significantly greater in the spinal cord than in the cerebral cortex. The numbers of both neutrophils and macrophages recruited to the lesion site were significantly higher in the spinal cord than in the brain, and the recruitment of these cells into the surrounding parenchyma was also more widespread in the cord. The area of BBB breakdown was substantially larger in the spinal cord and vascular damage persisted for a longer period. In the brain, as in spinal cord, the area to which neutrophils were recruited correlated well with the area of BBB breakdown. It will be of interest to determine the extent to which the infiltration of inflammatory cells contributes, either directly or indirectly, to the vascular permeability and secondary tissue damage or, conversely, to local tissue repair in the brain and the spinal cord.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1460-9568.1999.00792.x | DOI Listing |
J Bone Joint Surg Am
November 2024
Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY.
Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.
Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.
Purpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.
Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.
Sci Adv
January 2025
Department of Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
Prior knowledge changes how the brain processes sensory input. Whether knowledge influences initial sensory processing upstream of the brain, in the spinal cord, is unknown. Studying electric potentials recorded invasively and noninvasively from the human spinal cord at millisecond resolution, we find that the cord generates electric potentials at 600 hertz that are modulated by prior knowledge about the time of sensory input, as early as 13 to 16 milliseconds after stimulation.
View Article and Find Full Text PDFSpine Deform
January 2025
Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55906, USA.
Purpose: Non-fusion surgical options for pediatric scoliosis management such as vertebral body tethering (VBT) offer an alternative to spinal fusion. With this study, we aim to evaluate the postoperative outcomes in boys versus girls who have undergone VBT. Our hypothesis is that girls and boys will have similar outcomes by 2-year follow-up.
View Article and Find Full Text PDFJ Neurol
January 2025
NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
Cognitive impairment (CI) in multiple sclerosis (MS) is only partially explained by whole-brain volume measures, but independent component analysis (ICA) can extract regional patterns of damage in grey matter (GM) or white matter (WM) that have proven more closely associated with CI. Pathology in GM and WM occurs in parallel, and so patterns can span both. This study assessed whether joint-ICA of GM and WM features better explained cognitive function compared to single-tissue ICA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!