Mechanisms of G2 arrest in response to overexpression of p53.

Mol Biol Cell

Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

Published: November 1999

Overexpression of p53 causes G2 arrest, attributable in part to the loss of CDC2 activity. Transcription of cdc2 and cyclin B1, determined using reporter constructs driven by the two promoters, was suppressed in response to the induction of p53. Suppression requires the regions -287 to -123 of the cyclin B1 promoter and -104 to -74 of the cdc2 promoter. p53 did not affect the inhibitory phosphorylations of CDC2 at threonine 14 or tyrosine 15 or the activity of the cyclin-dependent kinase that activates CDC2 by phosphorylating it at threonine 161. Overexpression of p53 may also interfere with the accumulation of CDC2/cyclin B1 in the nucleus, required for cells to enter mitosis. Constitutive expression of cyclin B1, alone or in combination with the constitutively active CDC2 protein T14A Y15F, did not reverse p53-dependent G2 arrest. However, targeting cyclin B1 to the nucleus in cells also expressing CDC2 T14A Y15F did overcome this arrest. It is likely that several distinct pathways contribute to p53-dependent G2 arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC25646PMC
http://dx.doi.org/10.1091/mbc.10.11.3607DOI Listing

Publication Analysis

Top Keywords

overexpression p53
12
t14a y15f
8
p53-dependent arrest
8
cdc2
7
p53
5
mechanisms arrest
4
arrest response
4
response overexpression
4
p53 overexpression
4
arrest
4

Similar Publications

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

MEK inhibitors, such as trametinib, have shown therapeutic potential in head and neck squamous cell carcinoma (HNSCC). However, the factors influencing cancer cell sensitivity and resistance to MEK inhibition remain poorly understood. In our study, we observed that MEK inhibition significantly reduced the expression of MYC, a transcription factor critical for the therapeutic response.

View Article and Find Full Text PDF

PARP-1 has been linked to the progression of several types of cancer. We have recently reported that PARP-1 influences tumor progression in CRC through the regulation of CSCs in a p53-dependent manner. In this study, we propose that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) could act as a mediator.

View Article and Find Full Text PDF

Ezetimibe Anticancer Activity via the p53/Mdm2 Pathway.

Biomedicines

January 2025

Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa.

Background: Ezetimibe is used to treat cardiovascular disease as it blocks the sterol transporter Niemann-Pick C1-Like 1 (NPC1CL1) protein. However, recent evidence indicates that Ezetimibe inhibits several cancers indirectly by reducing circulating cholesterol or via specific signalling pathways.

Methods And Results: Our in silico studies indicate that Ezetimibe binds to the Tp53 binding domain in Mdm2, forming a more thermodynamically stable complex than nutlin3a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!