Recent electrostatics calculations on the cytochrome c oxidase from Paracoccus denitrificans revealed an unexpected coupling between the redox state of the heme-copper center and the state of protonation of a glutamic acid (E78II) that is 25 A away in subunit II of the oxidase. Examination of more than 300 sequences of the homologous subunit in other heme-copper oxidases shows that this residue is virtually totally conserved and is in a cluster of very highly conserved residues at the "negative" end (bacterial cytoplasm or mitochondrial matrix) of the second transmembrane helix. The functional importance of several residues in this cluster (E89II, W93II, T94II, and P96II) was examined by site-directed mutagenesis of the corresponding region of the cytochrome bo(3) quinol oxidase from Escherichia coli (where E89II is the equivalent of residue E78II of the P. denitrificans oxidase). Substitution of E89II with either alanine or glutamine resulted in reducing the rate of turnover to about 43 or 10% of the wild-type value, respectively, whereas E89D has only about 60% of the activity of the control oxidase. The quinol oxidase activity of the W93V mutant is also reduced to about 30% of that of the wild-type oxidase. Spectroscopic studies with the purified E89A and E89Q mutants indicate no perturbation of the heme-copper center. The data suggest that E89II (E. coli numbering) is critical for the function of the heme copper oxidases. The proximity to K362 suggests that this glutamic acid residue may regulate proton entry or transit through the K-channel. This hypothesis is supported by the finding that the degree of oxidation of the low-spin heme b is greater in the steady state using hydrogen peroxide as an oxidant in place of dioxygen for the E89Q mutant. Thus, it appears that the inhibition resulting from the E89II mutation is due to a block in the reduction of the heme-copper binuclear center, expected for K-channel mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi991764y | DOI Listing |
ACS Synth Biol
December 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
J Biosci Bioeng
December 2024
Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan. Electronic address:
Gamma-aminobutyric acid (GABA), which is synthesized from l-glutamic acid via glutamate decarboxylase (Gad), is used as food, supplements, and biodegradable plastics. Our previous study demonstrated an Escherichia coli mutant (ΔΔ) strain, lacking type I NADH dehydrogenase (NDH-I) and cytochrome bo oxidase (Cytbo), produced 7 g/L glutamic acid on MS1 glucose-minimal medium. In this study, the ΔΔ strain was used for improving GABA production.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
August 2024
Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
Cytochrome bo quinol oxidase belongs to the heme‑copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.
View Article and Find Full Text PDFInt J Mol Sci
January 2024
Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy.
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O to 2HO taking out electrons from quinol or cytochrome . Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO.
View Article and Find Full Text PDFPLoS One
October 2023
Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America.
Heme-copper oxygen reductases are membrane-bound oligomeric complexes that are integral to prokaryotic and eukaryotic aerobic respiratory chains. Biogenesis of these enzymes is complex and requires coordinated assembly of the subunits and their cofactors. Some of the components are involved in the acquisition and integration of different heme and copper (Cu) cofactors into these terminal oxygen reductases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!