Maximum of the M intermediate difference spectrum in the wild-type Halobacterium salinarium purple membrane is localized at 405-406 nm under conditions favoring accumulation of the M(N) intermediate (6 M guanidine chloride, pH 9.6), whereas immediately after laser flash the maximum is localized at 412 nm. The maximum is also localized at 412 nm 0.1 msec after the flash in the absence of guanidine chloride at pH 11.3. Within several milliseconds the maximum is shifted to short-wavelength region by 5-6 nm. This shift is similar to that in the D96N mutant which accompanies the M(N) (M(open)) intermediate formation. The main two differences are: 1) the rate of the shift is slower in the wild-type bacteriorhodopsin, and is similar to the rate of the M to N intermediate transition (t1/2 approximately 2 msec); 2) the shift in the wild-type bacteriorhodopsin is observed at alkaline pH values which are higher than pK of the Schiff base (approximately 10.8 at 1 M NaCl) in the N intermediate with the deprotonated Asp-96. Thus, the M(N) (M(open)) intermediate with open water-permeable inward proton channel is observed only at high pH, when the Schiff base and Asp-96 are deprotonated. The data confirmed our earlier conclusion that the M intermediate observed at lower pH has the closed inward proton channel.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mopen intermediate
12
wild-type bacteriorhodopsin
12
intermediate
8
bacteriorhodopsin photocycle
8
guanidine chloride
8
maximum localized
8
localized 412
8
schiff base
8
proton channel
8
formation mopen
4

Similar Publications

Maximum of the M intermediate difference spectrum in the wild-type Halobacterium salinarium purple membrane is localized at 405-406 nm under conditions favoring accumulation of the M(N) intermediate (6 M guanidine chloride, pH 9.6), whereas immediately after laser flash the maximum is localized at 412 nm. The maximum is also localized at 412 nm 0.

View Article and Find Full Text PDF

Two forms of N intermediate (N(open) and N(closed)) in the bacteriorhodopsin photocycle.

FEBS Lett

May 1999

Department of Photobiochemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.

Glutaraldehyde, aluminum ions and glycerol (that inhibit the M intermediate decay in the wild-type bacteriorhodopsin and azide-induced M decay in the D96N mutant by stabilization of the M(closed)) accelerate the N decay in the D96N mutant. The aluminum ions, the most potent activator of the N decay, induce a blue shift of the N difference spectrum by approximately 10 nm. Protonated azide as well as acetate and formate inhibit the N decay in both the D96N mutant and the wild-type protein.

View Article and Find Full Text PDF

Glutaraldehyde, lutetium ions and glycerol inhibit the blue shift of the difference spectra maximum of the M intermediate in the D96N mutant. The M formed has a spectrum indistinguishable from the M intermediate in wild-type bacteriorhodopsin. It has been concluded that the M(open) form previously described by us is identical to the M2 and Mn intermediates postulated by Zimanyi et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!