Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases.

J Neurosci

Laboratoire de Neurobiologie et Neuropharmacologie du Développement, Institut des Neurosciences, Université de Paris VI, 75005 Paris, France.

Published: November 1999

Tetanic stimuli to layer I-II afferents in rat prefrontal cortex induced long-term depression (LTD) of layer I-II to layer V pyramidal neuron glutamatergic synapses when tetani were coupled to bath application of dopamine. This LTD was blocked by the following metabotropic glutamate receptor (mGluR) antagonists coapplied with dopamine: (S)-alpha-methyl-4-carboxyphenylglycine (MCPG; group I and II antagonist), (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; group I antagonist), or (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE; group II antagonist). This suggests that the dopamine-facilitated LTD requires synaptic activation of groups I and II mGluRs during tetanus. LTD could also be induced by coupling tetani to bath application of groups I and II mGluR agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD). In the next series of experiments, coapplication of dopamine and 1S,3R-ACPD, but not application of either drug alone, consistently induced LTD without tetani or even single test stimuli during drug application, suggesting that coactivation of dopamine receptors and the mGluRs is sufficient for LTD induction. Immunoblot analyses with anti-active mitogen-activated protein kinases (MAP-Ks) revealed that D1 receptors, D2 receptors, group I mGluRs, and group II mGluRs all contribute to MAP-K activation in prefrontal cortex, and that combined activation of dopamine receptors and mGluRs synergistically or additively activate MAP-Ks. Consistently, LTD by dopamine + 1S, 3R-ACPD coapplication, as well as the two other forms of LTD (LTD by dopamine + tetani and LTD by 1S,3R-ACPD + tetani), was blocked by bath application of MAP-K kinase inhibitor PD98059. LTD by dopamine + 1S,3R-ACPD coapplication was also blocked by postsynaptic injection of synthetic MAP-K substrate peptide. Our results suggest that dopamine receptors and groups I and II mGluRs cooperate to induce LTD through converging postsynaptic activation of MAP-Ks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782965PMC
http://dx.doi.org/10.1523/JNEUROSCI.19-22-09788.1999DOI Listing

Publication Analysis

Top Keywords

dopamine receptors
16
groups mglurs
12
prefrontal cortex
12
bath application
12
group antagonist
12
dopamine
10
receptors groups
8
mglurs cooperate
8
long-term depression
8
rat prefrontal
8

Similar Publications

Nuclear calcium signaling in D1 receptor-expressing neurons of the nucleus accumbens regulates molecular, cellular and behavioral adaptations to cocaine.

Biol Psychiatry

January 2025

Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:

Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).

View Article and Find Full Text PDF

Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.

View Article and Find Full Text PDF

Regulation of tick attachment and rapid engorgement via dopamine receptors in the Asian longhorned tick Haemaphysalis longicornis.

Insect Biochem Mol Biol

January 2025

Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea; Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea. Electronic address:

Dopamine plays multifaceted roles in the physiology of insects and ticks, acting as a key neurotransmitter and modulator of various biological processes. In ticks, it plays a particularly important role in regulating salivary gland function, which is essential for successful tick feeding on hosts. Salivary secretion in ticks is orchestrated by the collection of saliva in the acinar lumen mediated by the dopamine receptor (D1) and the expulsion of collected saliva into the salivary duct mediated by the invertebrate specific D1-like dopamine receptor (InvD1L).

View Article and Find Full Text PDF

Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism.

Int J Mol Sci

January 2025

Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, 16132 Genova, Italy.

Acromegaly is a rare endocrine disorder caused by excessive growth hormone (GH) production, due, in the vast majority of cases, to the presence of a GH-secreting pituitary tumour. The chronic elevation of GH and the resulting high circulating levels of insulin-like growth factor-1 (IGF-1) cause the characteristic tissue overgrowth and a number of associated comorbidities, including several metabolic changes, such as glucose intolerance and overt diabetes mellitus (DM). Elevated GH concentrations directly attenuate insulin signalling and stimulate lipolysis, decreasing glucose uptake in peripheral tissues, thus leading to the development of impaired glucose tolerance and DM.

View Article and Find Full Text PDF

The Role of Neuroglia in the Development and Progression of Schizophrenia.

Biomolecules

December 2024

Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada.

Schizophrenia is a complex heterogenous disorder thought to be caused by interactions between genetic and environmental factors. The theories developed to explain the etiology of schizophrenia have focused largely on the dysfunction of neurotransmitters such as dopamine, serotonin and glutamate with their receptors, although research in the past several decades has indicated strongly that other factors are also involved and that the role of neuroglial cells in psychotic disorders including schizophrenia should be given more attention. Although glia were originally thought to be present in the brain only to support neurons in a physical, metabolic and nutritional capacity, it has become apparent that these cells have a variety of important physiological roles and that abnormalities in their function may make significant contributions to the symptoms of schizophrenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!