Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Osmotically driven swelling and shrinking of guard-cell protoplasts (GCPs) requires adjustment of surface area which is achieved by addition and removal of plasma membrane material. To investigate the mechanism for adaptation of surface area we have used patch-clamp capacitance measurements. The recorded membrane capacitance (C(m)) trace of swelling and shrinking GCPs occasionally revealed discrete upward and downward deflecting capacitance steps, respectively, with a median value of about 2 fF. The observed capacitance steps resulted from the fusion and fission of single vesicles with a diameter of around 300 nm. We conclude that exo- and endocytosis of these vesicles accommodate for osmotically driven surface area changes in GCPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(99)01396-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!