Background: Stimulation of 5-HT(4) receptors increases atrial chronotropic and inotropic responses. Whether other electrophysiological effects are produced is unknown. In humans and swine, 5-HT(4) receptors are present only in atrium. Therefore, the effects of a novel 5-HT(4) receptor antagonist, RS-100302, and the partial agonist cisapride on atrial flutter and fibrillation induced in swine were studied to delineate the role of the 5-HT(4) receptor in modulating atrial electrophysiological properties and the antiarrhythmic potential of RS-100302.
Methods And Results: In 17 anesthetized, open-chest, juvenile pigs, atrial flutter or fibrillation was induced by rapid right atrial pacing with or without a right atrial free wall crush injury, respectively. Atrial effective refractory period (ERP), conduction velocity, wavelength, and dispersion of refractoriness were determined during programmed stimulation via a 56-electrode mapping plaque sutured to the right atrial free wall. Ventricular electrophysiological parameters were also measured. All electrophysiological parameters were measured at baseline and after infusion of RS-100302 and cisapride. In the atrium, RS-100302 prolonged mean ERP (115+/-8 versus 146+/-7 ms, P<0.01) and wavelength (8.3+/-0.9 versus 9.9+/-0.8 cm, P<0.01), reduced dispersion of ERP (15+/-5 versus 8+/-1 ms, P<0.01), and minimally slowed conduction velocity (72+/-4 versus 67+/-5 cm/s, P<0.01). These effects were all partially reversed by cisapride. RS-100302 produced no ventricular electrophysiological effects. RS-100302 terminated atrial flutter in 6 of 8 animals and atrial fibrillation in 8 of 9 animals and prevented reinduction of sustained tachycardia in all animals.
Conclusions: The electrophysiological profile of RS-100302 suggests that it may have atrial antiarrhythmic potential without producing ventricular proarrhythmic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.cir.100.19.2010 | DOI Listing |
Arch Razi Inst
June 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Management, Bar-Ilan University, Ramat Gan, 5290002, Israel.
Int J Med Sci
December 2024
Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
J Psychiatr Res
January 2025
Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Medicine (Baltimore)
November 2024
Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
Background: Functional constipation (FC) has been found as a chronic gastrointestinal disease that is commonly diagnosed in patients. However, patients have a low satisfaction level with the treatment of constipation drugs (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!