The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/MB:12:1:117 | DOI Listing |
Acc Chem Res
August 2024
Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States.
ConspectusCreating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today.
View Article and Find Full Text PDFJ Chem Theory Comput
July 2024
PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France.
Angew Chem Int Ed Engl
September 2024
Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany.
We report the design of a single RNA sequence capable of adopting one of two ribozyme folds and catalyzing the cleavage and/or ligation of the respective substrates. The RNA is able to change its conformation in response to its environment, hence it is called chameleon ribozyme (CHR). Efficient RNA cleavage of two different substrates as well as RNA ligation by CHR is demonstrated in separate experiments and in a one pot reaction.
View Article and Find Full Text PDFMethods Mol Biol
February 2024
University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2023
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
While catalytic reactions of biomolecular processes play an indispensable role in life, extracting the underlying molecular picture often remains challenging. Based on ab initio simulations of the self-cleavage reaction of hairpin ribozyme, mode-decomposed infrared spectra, and cosine similarity analysis to correlate the product with reactant IR spectra, we demonstrate a strategy to extract molecular details from characteristic spectral changes. Our results are in almost quantitative agreement with the experimental IR band library of nucleic acids and suggest that the spectral range of 800-1200 cm is particularly valuable to monitor self-cleavage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!