Down's syndrome (DS) is one of the most frequent genetic disorders in humans. It has been suggested that overexpression of copper-zinc superoxide dismutase (SOD-1) in DS may be involved in some of the abnormalities observed, mainly neurodegenerative and immunopathological processes. One of the consequences is early thymic involution. Recently, Ts(1716)65Dn mice (Ts65Dn mice), made segmentally trisomic for a chromosome 16 segment, fulfill the criteria for a DS model. To study the possible role of SOD-1 overexpression in thymocyte biology, we analyzed the role of reactive oxygen intermediates during in vivo and in vitro programmed cell death (PCD) induced in the thymus of Ts65Dn mice. Our main findings can be summarized as follows. Ts65Dn thymuses exhibit greater PCD activity than controls, as ascertained by a combination of morphological, histochemical, and ultrastructural procedures. Ts65Dn thymocytes were highly susceptible to PCD induced by both LPS (in vivo) and dexamethasone, a synthetic glucocorticoid agonist (both in vivo and in vitro). Thymus abnormalities were probably caused by SOD-1 hyperexpression in Ts65Dn cells, in that reactive oxygen intermediate generation (specifically H2O2 production) is enhanced in thymocytes and clearly correlates with apoptosis. Similarly, oxidative injury correlated with the formation of lipid peroxidation by-products and antioxidants which partly inhibit PCD in thymocytes.
Download full-text PDF |
Source |
---|
BMC Pregnancy Childbirth
January 2025
School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Biology, Faculty of Science, University of Qom, Qom, 3716146611, Iran.
Fluoxetine is used in the management of depression, anxiety and other mood disorders by increasing serotonin levels in the brain and can cause sexual side effects by changing the homeostasis of sex hormones and increasing oxidative stress. Since many men who take fluoxetine are of reproductive age and sperm are exposed to fluoxetine for a considerable time, this study aimed to examine the in vitro effects of fluoxetine on human sperm biochemical markers and sperm parameters. Semen samples from 30 fertile men were divided into three groups: a positive control group, a negative control group and a fluoxetine-treated group.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
Copper (Cu), a trace element with redox activity, is both essential and toxic to living organisms. Its redox properties make it a cofactor for a variety of proteins, but it also causes oxidative stress, hence the need to maintain intracellular copper homeostasis. However, the role of copper in the regulation of antioxidant defense in bacteria remains unclear, and the involved transcription factors remain to be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!