Pressure-induced conformational changes in D(2)O solutions of the two genetic variants of beta-lactoglobulin A (beta-lg A) and beta-lactoglobulin B (beta-lg B) and an equal mixture of both variants (beta-lg A+B) were studied by employing variable-pressure Fourier transform infrared (VP-FTIR) spectroscopy. Changes in the secondary structure of beta-lg A were observed at lower pressure compared to beta-lg B, indicating that beta-lg A had a more flexible structure. During the decompression cycle beta-lg A showed protein aggregation, accompanied by an increase in alpha-helical conformation. The changes in the secondary structure of beta-lg B with the pressure were minor and for the most part reversible. Upon decompression no aggregation in beta-lg B was observed. Increasing the pressure from 0.01 to 12.0 kbar of a solution containing beta-lg A+B resulted in substantial broadening of all major amide I bands. This effect was partially reversed by decreasing the hydrostatic pressure. beta-lg A+B underwent less aggregate formation than beta-lg A, possibly as a result of protein-protein interactions between beta-lg A and beta-lg B. Hence, it is likely that the functional or biological attributes of beta-lg proteins may be affected in different ways by hydrostatic pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf9812376 | DOI Listing |
Anal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.
Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.
J Sci Food Agric
January 2025
Division of Medicine, University College London, London, UK.
Background: The escalating global prevalence of food allergies has intensified the need for hypoallergenic food products. Transglutaminase (TGase)-mediated crosslinking has garnered significant attention for its potential to reduce the allergenicity of food proteins. This study aimed to investigate the effects of TGase crosslinking on the potential allergenicity and conformational changes in a dual-protein system composed of β-lactoglobulin (β-LG) and soy protein isolate (SPI) at varying mass ratios (10:0, 7:3, 5:5, 3:7 and 0:10 (w/w)).
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China. Electronic address:
Spectroscopic techniques and molecular docking were employed to explore the binding mechanism and structural characteristics of β-lactoglobulin (β-lg) with linoleic acid. The research revealed that the interaction between β-lg and linoleic acid was primarily governed by static quenching. The attachment of linoleic acid to β-lg happened naturally via hydrophobic forces.
View Article and Find Full Text PDFLangmuir
January 2025
Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
The present work focuses on one of the possible target mechanisms of action of the anionic antimicrobial peptide β-lg derived from trypsin hydrolysis of β-lactoglobulin. After confirmation of bactericidal activity against a pathogenic Gram(+) strain and demonstration of the innocuousness on a eukaryotic cell line, we investigated the interaction of β-lg with monolayers and bilayers of dpPC and dpPC:dpPG as model membranes of eukaryotic and bacterial membranes, respectively. In monolayers, compared to zwitterionic dpPC, in the negatively charged dpPC-dpPG, β-lg injected into the subphase penetrated up to higher surface pressures and showed greater extents of penetration with increasing concentration in the subphase.
View Article and Find Full Text PDFFood Chem
December 2024
Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
This study examined the effect of quinone concentration on covalent interaction between β-lactoglobulin (β-Lg) and 4-methylbenzoquinone (4MBQ). β-Lg-4MBQ-0.2, β-Lg-4MBQ-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!