beta-Lactoglobulin (betaLg) was subjected to limited hydrolysis by trypsin, plasmin, and endoproteinase from Staphylococcus aureus V8 (S.aur.V8) to degrees of hydrolysis (DH) of 1, 2, and 4%. The several hydrolysates had different peptide compositions (determined by reversed-phase HPLC and gel-permeation chromatography [GPC]). GPC under nondenaturing, denaturing, and denaturing plus reducing conditions showed that the peptides formed were linked by hydrophobic interactions or by disulfide bonds or were not linked at all. At very low protein concentration, some differences in emulsion-forming properties were observed: only the plasmin hydrolysates could form emulsions with a uniform particle-size distribution. The emulsions formed with S.aur.V8 hydrolysates had poor emulsion-stabilizing properties. Some hydrolysates showed increased foam-forming properties in comparison with the intact protein. All foams formed were stable. Overall, the plasmin hydrolysate (DH4) contained relatively much larger molecules and/or hydrophobic molecules. Many molecules were disulfide-linked peptides. This hydrolysate also had the best functional properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf981229pDOI Listing

Publication Analysis

Top Keywords

functional properties
8
properties hydrolysates
8
staphylococcus aureus
8
properties
5
hydrolysates
5
beta-lactoglobulin hydrolysis
4
hydrolysis peptide
4
peptide composition
4
composition functional
4
hydrolysates action
4

Similar Publications

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.

View Article and Find Full Text PDF

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!