Xanthyletin (1), 3-(1',1'-dimethylallyl)xanthyletin (2), and chalepensin (3), the major coumarins isolated from Stauranthus perforatus, inhibit ATP synthesis from water to methylviologen in spinach thylakoids in a concentration-dependent manner. At low concentration chalepensin (3) inhibits basal and phosphorylating electron flow from water to K(3)[Fe(CN)(6)] without affecting uncoupled electron flow but accelerating Mg(2+)-ATPase activity. Thus, at low concentration the compound behaves as an energy transfer inhibitor. However, at higher concentrations this coumarin acts as an uncoupler because it enhances basal and phosphorylating electron transfer. On the other hand, coumarins 1 and 2 act as Hill reaction inhibitors, although 2 exhibited also uncoupler properties because it induces stimulation of basal and phosphorylating electron flow from water to ferricyanide. The site of interference of xanthyletin was located at the b(6)f-PC level of the electron transport chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf981121+ | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!