Vaults and telomerase share a common subunit, TEP1.

J Biol Chem

Department of Biological Chemistry, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, California 90095, USA.

Published: November 1999

Vaults are large cytoplasmic ribonucleoprotein complexes of undetermined function. Mammalian vaults have two high molecular mass proteins of 193 and 240 kDa. We have identified a partial cDNA encoding the 240-kDa vault protein and determined it is identical to the mammalian telomerase-associated component, TEP1. TEP1 is the mammalian homolog of the Tetrahymena p80 telomerase protein and has been shown to interact specifically with mammalian telomerase RNA and the catalytic protein subunit hTERT. We show that while TEP1 is a component of the vault particle, vaults have no detectable telomerase activity. Using a yeast three-hybrid assay we demonstrate that several of the human vRNAs interact in a sequence-specific manner with TEP1. The presence of 16 WD40 repeats in the carboxyl terminus of the TEP1 protein is a convenient number for this protein to serve a structural or organizing role in the vault, a particle with eight-fold symmetry. The sharing of the TEP1 protein between vaults and telomerase suggests that TEP1 may play a common role in some aspect of ribonucleoprotein structure, function, or assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.46.32712DOI Listing

Publication Analysis

Top Keywords

vaults telomerase
8
tep1
8
vault particle
8
tep1 protein
8
protein
6
vaults
5
telomerase share
4
share common
4
common subunit
4
subunit tep1
4

Similar Publications

Exploring the role of vault complex in the nervous system: a literature review.

Rev Neurosci

November 2024

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran.

Vault RNAs (vtRNAs) are a novel group of non-coding RNAs that are involved in various signaling mechanisms. vtRNAs are joined by three proteins major vault protein (MVP), vault poly (ADP-ribose) polymerase (VPARP), and telomerase-associated protein 1 (TEP1) to form the vault complex. In humans, only four vtRNA including vtRNA 1-1, vtRNA 1-2, vtRNA 1-3, vtRNA 2-1) have been discovered.

View Article and Find Full Text PDF

Structure, Dynamics and Functional Implications of the Eukaryotic Vault Complex.

Subcell Biochem

July 2024

Structural and Molecular Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain.

Vault ribonucleoprotein particles are naturally designed nanocages, widely found in the eukaryotic kingdom. Vaults consist of 78 copies of the major vault protein (MVP) that are organized in 2 symmetrical cup-shaped halves, of an approximate size of 70x40x40 nm, leaving a huge internal cavity which accommodates the vault poly(ADP-ribose) polymerase (vPARP), the telomerase-associated protein-1 (TEP1) and some small untranslated RNAs. Diverse hypotheses have been developed on possible functions of vaults, based on their unique capsular structure, their rapid movements and the distinct subcellular localization of the particles, implicating transport of cargo, but they are all pending confirmation.

View Article and Find Full Text PDF

Cancer cells show significant dysregulation of genes expression, which may favor their survival in the tumor environment. In this study, the cellular vault's components MVP (major vault protein), TEP1 (telomerase-associated protein 1) and vPARP (vault poly(ADP-ribose) polymerase) were transiently or completely inhibited in U2OS cells (human bone osteosarcoma epithelial cells) to evaluate their impact on the cell proliferative and migratory capacity as well as on the development of their resistance to the drug vinorelbine. Comparative analysis of MVP protein expression level in normal colon tissue, primary colorectal tumor, and metastasis showed that the expression of this protein does not increase significantly in the primary tumor, but its expression increases in metastatic cells.

View Article and Find Full Text PDF

The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-"major vault protein" (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated.

View Article and Find Full Text PDF

The vault RNA of plays a role in the production of -spliced mRNA.

J Biol Chem

October 2019

Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536.

The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!