Regulation of HIV-1 transcription.

Gene Expr

Department of Immunology/Microbiology, Rush Presbyterian St. Luke's Medical Center, Chicago, IL 60612, USA.

Published: December 1999

Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans-activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 transcription in infected cells and highlights the important contributions human lentivirus gene regulation has made to our general understanding of the transcription process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157391PMC

Publication Analysis

Top Keywords

hiv-1 transcription
16
regulation hiv-1
12
transcription
10
infected cells
8
transcription factors
8
hiv-1
6
regulation
4
transcription human
4
human immunodeficiency
4
immunodeficiency virus
4

Similar Publications

Objective: To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools.

Design: Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms.

Methods: By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV (HIV[-]), with HIV without brain disease (HIV[+]), with HIV-associated neurocognitive disorder (HAND), or HAND with encephalitis (HIVE).

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Human immunodeficiency virus-1 (HIV-1) uses a number of strategies to modulate viral and host gene expression during its life cycle. To characterize the transcriptional and translational landscape of HIV-1 infected cells, we used a combination of ribosome profiling, disome sequencing and RNA sequencing. We show that HIV-1 messenger RNAs are efficiently translated at all stages of infection, despite evidence for a substantial decrease in the translational efficiency of host genes that are implicated in host cell translation.

View Article and Find Full Text PDF

Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.

J Virus Erad

December 2024

HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!