Objectives: We compared the efficacy of a novel rectilinear biphasic waveform, consisting of a constant current first phase, with a damped sine wave monophasic waveform during transthoracic defibrillation.
Background: Multiple studies have shown that for endocardial defibrillation, biphasic waveforms have a greater efficacy than monophasic waveforms. More recently, a 130-J truncated exponential biphasic waveform was shown to have equivalent efficacy to a 200-J damped sine wave monophasic waveform for transthoracic ventricular defibrillation. However, the optimal type of biphasic waveform is unknown.
Methods: In this prospective, randomized, multicenter trial, 184 patients who underwent ventricular defibrillation were randomized to receive a 200-J damped sine wave monophasic or 120-J rectilinear biphasic shock.
Results: First-shock efficacy of the biphasic waveform was significantly greater than that of the monophasic waveform (99% vs. 93%, p = 0.05) and was achieved with nearly 60% less delivered current (14 +/- 1 vs. 33 +/- 7 A, p < 0.0001). Although the efficacy of the biphasic and monophasic waveforms was comparable in patients with an impedance < 70 ohms (100% [biphasic] vs. 95% [monophasic], p = NS), the biphasic waveform was significantly more effective in patients with an impedance > or = 70 ohms (99% [biphasic] vs. 86% [monophasic], p = 0.02).
Conclusions: This study demonstrates a superior efficacy of rectilinear biphasic shocks as compared with monophasic shocks for transthoracic ventricular defibrillation, particularly in patients with a high transthoracic impedance. More important, biphasic shocks defibrillated with nearly 60% less current. The combination of increased efficacy and decreased current requirements suggests that biphasic shocks as compared with monophasic shocks are advantageous for transthoracic ventricular defibrillation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0735-1097(99)00363-0 | DOI Listing |
J Neurophysiol
December 2024
Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, 2031 NSW, Australia.
Introduction: Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown.
Methods: In 15 participants (9F:6M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) using conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA) and medial gastrocnemius (MG) muscles.
Bioelectricity
December 2024
Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering, Blacksburg, Virginia, USA.
Irreversible electroporation (IRE) is a minimally invasive ablation technique that compromises integrity of the cell membrane through the application of short duration, high voltage electric pulses to induce cell death. Adverse effects of IRE such as muscle contractions are reduced with higher frequency biphasic pulsing, commonly known as high-frequency irreversible electroporation (H-FIRE). IRE and H-FIRE treatments have shown to increase immune activation through the induction of both immediate and delayed cell death, indicated by the release of damage-associated molecular pathways, antigens, and proteins.
View Article and Find Full Text PDFJ Sport Rehabil
December 2024
Krannert School of Physical Therapy, University of Indianapolis, Indianapolis, IN, USA.
Context: Interest in the effects of concurrently using neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) to improve muscle strength has risen, but limited studies and inconsistent findings have led to more questions. The 2 current projects aimed to systematically investigate how NMES waveform shape and BFR occlusion pressure acutely influence electrically elicited force (EEF) and tissue oxygen saturation (StO2) of the knee extensors.
Design: A single-session repeated-measures design was followed.
Acupunct Med
December 2024
Department of Physiotherapy, University of Seville, Seville, Spain.
Background: Electrical nerve stimulation is an effective therapeutic tool in the field of rehabilitation for the management of musculoskeletal conditions.
Objective: To analyze the muscle activity of the short head of the biceps femoris (SHBF) and long head of the biceps femoris (LHBF) after the application of percutaneous electrical nerve stimulation to the common fibular versus tibial nerve compartment of the sciatic nerve.
Methods: Thirty-eight healthy subjects received electrical stimulation (asymmetric biphasic rectangular waveforms) through a needle in the sciatic nerve.
Heart Rhythm
November 2024
Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!