Relationship between cardiopulmonary bypass flow rate and cerebral embolization in dogs.

Anesthesiology

Department of Anesthesiology, Mayo Foundation and Mayo Clinic, Rochester, Minnesota 55905, USA.

Published: November 1999

Background: Cerebral embolization is a primary cause of cardiac surgical neurologic morbidity. During cardiopulmonary bypass (CPB), there are well-defined periods of embolic risk. In theory, cerebral embolization might be reduced by an increase in pump flow during these periods. The purpose of this study was to determine the CPB flow-embolization relation in a canine model.

Methods: Twenty mongrel dogs underwent CPB at 35 degrees C with alpha-stat management and a fentanyl-midazolam anesthetic. In each animal, CPB flow was adjusted to achieve a mean arterial pressure of 65-75 mmHg. During CPB, an embolic load of 1.2 x 10(5) 67 microm fluorescent microspheres was injected into the arterial inflow line. Before and after embolization, cerebral blood flow was determined using 15-microm microspheres. Tissue was taken from 12 brain regions and microspheres were recovered. The relation between pump flow and embolization/g of brain was determined.

Results: The mean arterial pressure at embolization was 67 +/-4 mmHg, and the range of pump flow was 0.9-3.5 l x min(-1)x m(-2). Cerebral blood flow was independent of pump flow. At lower pump flow, the percentage of that flow delivered to the brain increased. There was a strong inverse relation between pump flow and cerebral embolization (r = -0.708, P < 0.000 by Spearman rank order correlation).

Conclusions: Cerebral embolization is determined by the CPB flow. At an unchanged mean arterial pressure, as pump flow is reduced, a progressively greater proportion of that flow is delivered to the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-199911000-00031DOI Listing

Publication Analysis

Top Keywords

pump flow
28
cerebral embolization
20
flow
14
arterial pressure
12
cardiopulmonary bypass
8
cpb flow
8
cerebral blood
8
blood flow
8
relation pump
8
flow delivered
8

Similar Publications

The twin reversed arterial perfusion (TRAP) sequence is a rare complication associated with monochorionic twins. It is characterized by blood flow from the umbilical artery of the normal (pump) twin to the umbilical artery of the abnormal (acardiac) twin via artery-to-artery anastomosis. This condition is associated with 100% mortality in the acardiac twin and a high rate of perinatal morbidity and mortality in the pump twin, primarily due to intrauterine hypoxic injury, heart failure, and prematurity.

View Article and Find Full Text PDF

Purpose: Despite significant improvements in the design and performance of continuous flow left ventricular assist devices (CFLVADs), one of the most important reasons hampering further penetration of this technology is the occurrence of adverse events, especially strokes. One of the well-known risk factors for strokes is hypertension which is particularly common in patients undergoing a CFLVAD implant. While the device is implanted in the heart, strokes happen due to pathology in the brain and we hypothesised that modelling the blood flow in the circle of Willis might shed light on the causation of strokes in this situation.

View Article and Find Full Text PDF

The intra-aortic balloon pump (IABP) is a widely-used mechanical circulatory support device that enhances hemodynamics in patients with heart conditions. Although the IABP is a common clinical tool, its effectiveness in enhancing outcomes for patients with acute myocardial infarction and cardiogenic shock remains disputed. This study aimed to assess the effectiveness of intra-aortic dual-balloon pump (IADBP) and its impact on aortic hemodynamics compared with an IABP.

View Article and Find Full Text PDF

Aortic dilatation is a severe pathology that increases the risk of rupture and its hemodynamics could be accurately assessed by using the 4D flow cardiovascular magnetic resonance (CMR) technique but flow assessment under complex flow patterns require validation. The aim of this work was to develop an in vitro system compatible with CMR to assess the accuracy of volume flow measurements in dilated aortas. Approach.

View Article and Find Full Text PDF

Background And Objectives: Gut microbial symbionts have been shown to influence the development of autoimmunity in multiple sclerosis (MS). Emerging research points to an important relationship between the microbial-IgA interface and MS pathophysiology. IgA-secreting B cells are observed in the MS brain, and shifts in gut bacteria-IgA binding have been described in some patients with MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!