Background And Purpose: alpha(2)-Macroglobulin may be implicated in amyloid beta protein deposition. A deletion in the exon 18 splice acceptor of the alpha(2)-macroglobulin gene (A2M) has been reported to be associated with risk for Alzheimer's disease (AD). In search of genetic risk factors for cerebral amyloid angiopathy (CAA), we investigated association of the A2M deletion polymorphism with CAA.

Methods: The association between the severity of CAA and A2M deletion polymorphism was investigated in 178 autopsy cases of the elderly including 68 patients with AD.

Results: There was no significant difference in the severity of CAA between individuals with the A2M deletion allele and those without in the AD, non-AD, or total cases. Status for the epsilon4 allele of the apolipoprotein E gene did not influence the results.

Conclusions: Our results suggest that the A2M deletion polymorphism may not be a definitive risk factor of CAA in the elderly, although further study with larger samples is necessary to confirm this.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.str.30.11.2277DOI Listing

Publication Analysis

Top Keywords

deletion polymorphism
16
a2m deletion
16
alpha2-macroglobulin gene
8
cerebral amyloid
8
amyloid angiopathy
8
severity caa
8
deletion
6
a2m
5
polymorphism alpha2-macroglobulin
4
gene cerebral
4

Similar Publications

Background: Recent genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified approximately 70 genetic loci linked to the disorder. The pivotal challenge in the post-GWAS era is dissecting the underlying causal variants and effector genes, a crucial step for effective therapeutic development. Most of these variants reside in non-coding regions of the genome, suggesting their regulatory role in distal gene expression.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common form of dementia. Neuropathologically, AD stands out as a mixed proteinopathy. Beta-amyloid and tau biomarkers can now add in-vivo support to the AD diagnosis.

View Article and Find Full Text PDF

Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).

Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.

View Article and Find Full Text PDF

Exploring caffeine as a disruptor of membrane integrity and genomic stability in Staphylococcus aureus: functional and in silico analysis.

Arch Microbiol

January 2025

School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Innovation Campus, Kudlu Gate, Hosur Rd, Bengaluru, 560 068, India.

To explore the mechanistic underpinnings of caffeine as a potent antibacterial against Staphylococcus aureus ATCC 25923 via in vitro functional assays, whole-genome sequencing, and in silico docking studies. In vitro studies established that caffeine's minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 is 0.

View Article and Find Full Text PDF

Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!