Polycitone A, an aromatic alkaloid isolated from the ascidian Polycitor sp. exhibits potent inhibitory capacity of both RNA- and DNA-directed DNA polymerases. The drug inhibits retroviral reverse transcriptase (RT) [i.e. of human immunodeficiency virus type 1 (HIV), murine leukaemia virus (MLV) and mouse mammary tumour virus (MMTV)] as efficiently as cellular DNA polymerases (i.e. of both DNA polymerases alpha and beta and Escherichia coli DNA polymerase I). The mode and mechanism of inhibition of the DNA-polymerase activity associated with HIV-1 RT by polycitone A have been studied. The results suggest that the inhibitory capacity of the DNA polymerase activity is independent of the template-primer used. The RNase H function, on the other hand, is hardly affected by this inhibitor. Polycitone A has been shown to interfere with DNA primer extension as well as with the formation of the RT-DNA complex. Steady-state kinetic studies demonstrate that this inhibitor can be considered as an allosteric inhibitor of HIV-1 RT. The target site on the enzyme may be also spatially related to the substrate binding site, since this inhibitor behaves competitively with respect to dTTP with poly(rA).oligo(dT) as template primer. Chemical transformations of the five phenol groups of polycitone A by methoxy groups have a determinant effect on the inhibitory potency. Thus, the pentamethoxy derivative which is devoid of all hydroxy moieties, loses significantly, by 40-fold, the ability to inhibit the DNA polymerase function. Furthermore, this analogue lacks the ability to inhibit DNA primer extension as well as the formation of the RT-DNA complex. Indeed, inhibition of the first step in DNA polymerization, the formation of the RT-DNA complex, and hence, of the overall process, could serve as a model for a universal inhibitor of the superfamily of DNA polymerases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220617 | PMC |
Mol Microbiol
January 2025
Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.
View Article and Find Full Text PDFBiotechnol J
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
Loop-mediated isothermal amplification (LAMP) is a detection method widely used in pathogen detection and clinical diagnosis. Nevertheless, it is highly constrained by thermal stability, catalytic activity, and resistance to inhibitors of Bst DNA polymerase. In this study, a novel DNA polymerase was characterized from Clostridium thermocellum, exhibiting potential in LAMP detection.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
The tomato Ty-6 gene conferring resistance against begomoviruses has been cloned and shown to be a variant of DNA polymerase delta subunit 1. Ty-6 is a major resistance gene of tomato that provides resistance against monopartite and bipartite begomoviruses. The locus was previously mapped on chromosome 10, and in this study, we fine-mapped Ty-6 to a region of 47 kb, including four annotated candidate genes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
The ability to determine the essentiality of a gene in the protozoan parasite Leishmania is important to identify potential targets for intervention and understanding the parasite biology. CRISPR gene editing technology has significantly improved gene targeting efficiency in Leishmania. There are two commonly used CRISPR gene targeting methods in Leishmania; the stable expression of the gRNA and Cas9 using a plasmid containing a Leishmania ribosomal RNA gene promoter (rRNA-P stable protocol) and the T7 RNA polymerase based transient gRNA expression system in promastigotes stably expressing Cas9 (T7 transient protocol).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!